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Introduction to Big Data 
 

• Need of Big Data 

The rise in technology has led to the production and storage of voluminous amounts of data. 

Earlier megabytes (106 B) were used but nowadays petabytes (1015 B) are used for 

 

 

 

 

 

 

 

Figure 1.1 Evolution of Big Data and their characteristics 
 

An example of a traditional tool for structured data storage and querying is RDBMS. 

Volume, velocity and variety (3Vs) of data need the usage of number of programs and 

tools for analyzing and processing at a very high speed. 

 

 
 

• BIG DATA 

Data is information, usually in the form of facts or statistics that one can analyze or use for 

further calculations. Data is information that can be stored and used by a computer program. Data 

is information presented in numbers, letters, or other form. Data is information from series of 

observations, measurements or facts. Data is information from series of behavioral observations, 

measurements or facts. 

Web Data 

Web data is the data present on web servers (or enterprise servers) in the form of text, 

images, videos, audios and multimedia files for web users. A user (client software) 

interacts with this data. A client can access (pull) data of responses from a server. The 

data can also publish (push) or post (after registering subscription) from a server. Internet 



applications including web sites, web services, web portals, online business applications, 

emails, chats, tweets and social networks provide and consume the web data. 

• Examples of Web data 

• Wikipedia, 

• Google Maps, 

• YouTube. 

• Face Book 

• Classification of Data 

Data can be classified as 

• structured 

• semi-structured 

• multi-structured 

• unstructured. 

Structured Data 

Structured data conform and associate with data schemas and data models. Structured 

data are found in tables (rows and columns). Nearly 15-20% data are in structured or 

semi-structured form. 

 

Structured data enables the following: 
 

• data insert, delete, updateand append 
 

• indexing to enable faster data retrieval 
 

• Scalability which enables increasing or decreasing capacities and data 

processing operations such as, storing, processing and analytics 

• Transactions processing which follows ACID rules (Atomicity, Consistency, 

Isolation and Durability) 

• encryption and decryption for data security. 

 

 
Semi Structured Data 

 



Examples of semi-structured data are XML and JSON documents. Semi-structured 

data contain tags or other markers, which separate semantic elements and enforce 

hierarchies of records and fields within the data. Semi-structured form of data does 

not conform and associate with formal data model structures. Data do not associate 

data models, such as the relational database and table models. 

Multi Structured Data 
 

• Multi-structured data refers to data consisting of multiple formats of data, 

viz. structured, semi-structured and/or unstructured data. 

• Multi-structured data sets can have many formats. 
 

• They are found in non-transactional systems. 
 

• For example, streaming data on customer interactions, data of multiple sensors, 

data at web or enterprise server or the data- warehouse data in multiple formats. 

Unstructured Data 
 

• Data does not possess data features such as a table or a database. 
 

• Unstructured data are found in file types such as .TXT, .CSV. 

 

• Data may be as key-value pairs, such as hash key-value pairs. 
 

• Data may have internal structures, such as in e- mails. 
 

• The data do not reveal relationships, hierarchy relationships. 
 

• The relationships, schema and features need to be separately established. 
 

Examples of 

unstructured Data 
 

• Mobile data: Text messages, chat messages, tweets, blogs and comments 
 

• Website content data: YouTube videos, browsing data, e-payments, web store 

data, user-generated maps 

• Social media data: For exchanging data in various forms 
 

• Texts and documents 
 



• Personal documents and e-mails 
 

• Text internal to an organization: Text within documents, logs, survey results 
 

• Satellite images, atmospheric data, surveillance, traffic videos, images from 

Instagram, Flickr (upload, access, organize, edit and share photos from any 

device from anywhere in the world). 

• Big Data Definitions 
 

• Big Data is high-volume, high-velocity and/or high-variety information that 

requires new forms of processing for enhanced decision making, insight 

discovery and process optimization 

• A collection of data sets so large or complex that traditional data processing 

applications are inadequate.” -Wikipedia 

• Data of a very large size, typically to the extent that its manipulation and 

management present significant logistical challenges-oxford English 

dictionary. 

• Big Data refers to data sets whose size is beyond the ability of typical database 

software tool to capture, store, manage and analyze 

 

• Big Data Characteristics 
 

• Volume: is related to size of the data 
 

• Veloctiy: refers to the speed of generation of data. 
 

• Variety: comprises of a variety of data 
 

• Varacity: quality of data captured, which can vary greatly, affecting its accurate 

analysis 

• Big Data Types 

• Social networks and web data, such as Facebook, Twitter, e-mails, blogs and 

YouTube. 



• Transactions data and Business Processes {BPs) data, such as credit card 

transactions, flight bookings, etc. and public agencies data such as medical 

records, insurance business data etc. 

• Customer master data such as data for facial recognition and for the name, date 

of birth, marriage anniversary, gender, location and income category, 

• Machine-generated data, such as machine-to-machine or Internet of Things data, 

and the data from sensors, trackers, web logs and computer systems log. 

• Computer generated data is also considered as machine generated data 

• Human-generated data such as biometrics data, human—machine interaction 

data, e- mail records with a mail server and MySQL database of student grades. 

• Humans also records their experiences in ways such as writing these in 

notebooks diaries, taking photographs or audio and video clips. 

• Human-sourced information is now almost entirely digitized and stored 

everywhere from personal computers to social networks 

Examples of Big Data 
 

• Chocolate Marketing Company with large number of installed Automatic 

Chocolate Vending Machines (ACVMs). 

• Automotive Components and Predictive Automotive Maintenance Services 
 
 
 

• (ACPAMS) rendering customer services for maintenance and servicing of 

(Internet) connected cars and its components 

• Weather data Recording, Monitoring and Prediction (WRMP) Organization. 
 

 

Method 
 

Type of Data 

 
Data sources 

(traditional) 

Data storage such as records, RDBMs, distributed databases, row-oriented In- 

memory data tables, column-oriented In-memory data tables, data warehouse, 

server, machine-generated data, human-sourced data, Business 

Process (BP) data, Business Intelligence (BI) data 

Data formats 

(traditional) 

 

Structured and semi-structured 

 

Big Data 

sources 

Data storage, distributed file system, Operational Data Store (ODS), data marts, 

data warehouse, NoSQL database (MongoDB, Cassandra), sensors data, audit 

trail of financial transactions, external data such as web, social media, weather 

data, health records 



Big Data 

formats 

 

Unstructured, semi-structured and multi-structured data 

 

Data Stores 

structure 

Web, enterprise or cloud servers, data warehouse, row-oriented data for 

OLTP, column-oriented for OLAP, records, graph database, hashed entries 

for key/value pairs 

Processing 

data rates 

 

Batch, near-time, real-time, streaming 

Processing Big 

Data rates 
High volume, velocity, variety and veracity, batch, near real-time and streaming 

data processing, 

Analysis types Batch, scheduled, near real-time datasets analytics 

Big Data 

processin 

g methods 

 

Batch processing (for example, using MapReduce, Hive or Pig), real-time 

processing (for example, using SparkStreaming, SparkSQL, Apache Drill) 

 

Data analysis 

methods 

Statistical analysis, predictive analysis, regression analysis, Mahout, machine 

learning algorithms, clustering algorithms, classifiers, text analysis, social 

network analysis, location-based analysis, diagnostic analysis, cognitive 

analysis 
 

Data Usage Human, business process, knowledge discovery, enterprise applications, Data 

• Big Data Classification 
 

Big Data can be classified on the basis of its characteristics that are used for designing 

data architecture for processing and analytics. 

 

• Big Data Handling Techniques 
 

Following are the techniques deployed for Big Data storage, 

applications, data management and mining and analytics: 

• Huge data   volumes   storage,   data   distribution,   high-speed   networks   and   

high- 

performance computing 

• Applications scheduling using open source, reliable, scalable, distributed file 

system, distributed database, parallel and distributed computing systems, such 

as Hadoop or Spark 

• Open source tools which are scalable, elastic and provide virtualized 

environment, clusters of data nodes, task and thread management 

• Data management using NoSQL, document database, column-oriented 

database, graph database and other form of databases used as per needs of the 



applications and in- memory data management using columnar or Parquet 

formats during program execution 

• Data mining and analytics, data retrieval, data reporting, data visualization and 

machine- learning Big Data tools. 

• Scalability and Parallel Processing 
 

• Big Data needs processing of large data volume, and therefore needs 

intensive computations. 

• Processing complex applications with large datasets (terabyte to petabyte 

datasets) need hundreds of computing nodes. 

• Processing of this much distributed data within a short time and at minimum 

cost is problematic. 

• Scalability is the capability of a system to handle the workload as per the 

magnitude of the work. 

• System capability needs increment with the increased workloads. 

• When the workload and complexity exceed the system capacity, scale it up 

and scale it out. 

• Scalability enables increase or decrease in the capacity of data storage, 

processing& 

 

analytics. 

• Analytical Scalability 
 

Vertical scalability means scaling up the given system’s resources and increasing the 

system’s analytics, reporting and visualization capabilities. This is an additional way to 

solve problems of greater complexities. Scaling up means designing the algorithm 

according to the architecture that uses resources efficiently. 

x terabyte of data take time t for processing, code size with increasing complexity 

increase by factor n, then scaling up means that processing takes equal, less or much 

less than (n * t). 

Horizontal scalability means increasing the number of systems working in coherence 

and scaling out the workload. Processing different datasets of a large dataset deploys 

horizontal scalability. Scaling out means using more resources and distributing the 



processing and storage tasks in parallel. The easiest way to scale up and scale out 

execution of analytics software is to implement it on a bigger machine with more 

CPUs for greater volume, velocity, variety and complexity of data. The software will 

definitely perform better on a bigger machine. 

• Massive Parallel Processing Platforms 
 

Parallelization of tasks can be done at several levels: 
 

• distributing separate tasks onto separate threads on the same CPU 

• distributing separate tasks onto separate CPUs on the same computer 

• distributing separate tasks onto separate computers. 

• Distributed Computing Model 
 

A distributed computing model uses cloud, grid or clusters, which process and analyze 

big and large datasets on distributed computing nodes connected by high-speed 

networks. 

Big Data processing uses a parallel, scalable and no-sharing program model, such as 

MapReduce, for computations on it. 
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• Cloud Computing 
 



• “Cloud computing is a type of Internet-based computing that provides shared 

processing resources and data to the computers and other devices on demand.” 

• One of the best approach for data processing is to perform parallel and 

distributed computing in a cloud-computing environment 

• Cloud resources can be Amazon Web Service (AWS) Elastic Compute Cloud 

(EC2), Microsoft Azure or Apache CloudStack. 

Features of Cloud Computing 
 

• on-demand service 
 

• resource pooling, 
 

• scalability, 
 

• accountability, 
 

• broad network access. 
 

• Cloud services can be accessed from anywhere and at any time through the Internet. 

 

Cloud Services 
 

There are three types of Cloud Services 
 

• Infrastructure as a Service (IaaS): 
 

• Platform as a Service (PaaS): 
 

• Software as a Service (SaaS): 
 

Infrastructure as a Service (IaaS): 
 

• Providing access to resources, such as hard disks, network connections, databases 

storage, data center and virtual server spaces is Infrastructure as a Service (IaaS). 

• Some examples are Tata Communications, Amazon data centers and virtual servers. 
 

•  Apache CloudStack is an open source software for deploying and managing a 

large network of virtual machines, and offers public cloud services which provide 

highly scalable Infrastructure as a Service (IaaS). 



Platform as a Service 
 

• It implies providing the runtime environment to allow developers to build 

applications and services, which means cloud Platform as a Service. 

• Software at the clouds support and manage the services, storage, networking, 

deploying, testing, collaborating, hosting and maintaining applications. 

• Examples are Hadoop Cloud Service (IBM BigInsight, Microsoft Azure HD 

Insights, Oracle Big Data Cloud Services). 

Software as a service 
 

• Providing software applications as a service to end- users is known as 

Software as a Service. 

• Software applications are hosted by a service provider and made available to 

customers over the Internet. 

 

• Some examples are SQL Google SQL, IBM BigSQL, Microsoft Polybase and 

Oracle Big Data SQL. 

• Grid Computing 
 

• Grid Computing refers to distributed computing, in which a group of computers 

from several locations are connected with each other to achieve a common 

task. 

• The computer resources are heterogeneously and geographically dispersing. 
 

• A group of computers that might spread over remotely comprise a grid. 
 

• A single grid of course, dedicates at an instance to a particular application only. 
 

• Grid computing, similar to cloud computing, is scalable. 
 

• Cloud computing depends on sharing of resources (for example, networks, 

servers, storage, applications and services) to attain coordination and 

coherence among resources similar to grid computing. 

• Similarly, grid also forms a distributed network for resource integration. 



 

Cluster Computing 
 

A cluster is a group of computers connected by a network. The group works 

together to accomplish the same task. Clusters are used mainly for load balancing. 

They shift processes between nodes to keep an even load on the group of 

connected computers. 

 

• Volunteer Computing 

 
Volunteers provide computing resources to projects of importance that use 

resources to do distributed computing and/or storage. Volunteer computing is a 

distributed computing paradigm which uses computing resources of the volunteers. 

Volunteers are organizations or members who own personal computers. Projects 

examples are science- related projects executed by universities or academia in 

general. 

Some issues with volunteer computing systems are: 
 

• Volunteered computers heterogeneity 

• Drop outs from the network over time 

• Their sporadic availability 

 
 

• Designing the Data Architecture 
 

Big Data architecture is the logical and/or physical layout/structure of how Big Data 

will be stored, accessed and managed within a Big Data or IT environment. 

Architecture logically defines how Big Data solution will work, the core components 

(hardware, database, software, storage) used, flow of information, security and more. 

Data analytics need the number of sequential steps. Big Data architecture design task 

simplifies when using the logical layers approach. Figure 1.2 shows the logical layers 

and the functions which are considered in Big Data architecture 

Data processing architecture consists of five layers: 



 
• identification of data sources, 

 

• acquisition, ingestion, extraction, pre-processing, transformation of data, 
 

• Data storage at files, servers, cluster or cloud, 
 

• data-processing, 
 

• data consumption in the number of programs and tools. 

 
 

 

 
 

data for immediate use or transfer. Ingestion may be in batches or in real time 

using pre- processing or semantics. 

Layer 1 
 

• L1 considers the following aspects in a design: 
 

• Amount of data needed at ingestion layer 2 (L2) 

 

• Push from L1 or pull by L2 as per the mechanism for the usages 

 

• Source data-types: Database, files, web or service 
 

• Source formats, i.e., semi-structured, unstructured or structured. 
 

Layer 2 
 

• Ingestion and ETL processes either in real time, which means store and use the 

data as generated, or in batches. 

• Batch processing is using discrete datasets at scheduled or periodic intervals of time. 
 

Layer 3 
 

• Data storage type (historical or incremental), format, compression, incoming data 
 

• frequency, querying patterns and consumption requirements for L4 or L5 
 

• Data storage using Hadoop distributed file system or NoSQL data stores—

HBase, Cassandra, MongoDB. 



Layer 4 
 

• Data processing software such as MapReduce, Hive, Pig, Spark, Spark 

Mahout, Spark Streaming 

• Processing in scheduled batches or real time or hybrid 
 

• Processing as per synchronous or asynchronous processing requirements at L5. 
 

Layer 5 

 

• Data integration 
 

• Datasets usages for reporting and visualization 
 

• Analytics (real time, near real time, scheduled batches), BPs, BIs, knowledge 

discovery 
 

• Export of datasets to cloud, web or other systems 

 

• Managing Data for Analysis 
 

Data managing means enabling, controlling, protecting, delivering and enhancing the 

value of data and information asset. Reports, analysis and visualizations need well- 

defined data. 

Data management functions include: 
 

• Data assets creation, maintenance and protection 
 

• Data governance, which includes establishing the processes for ensuring the 

availability, usability, integrity, security and high-quality of data. The processes 

enable trustworthy data availability for analytics, followed by the decision making 

at the enterprise. 

• Data architecture creation, modelling and analysis 
 

• Database maintenance, administration and management system. For example, 

RDBMS (relational database management system), NoSQL 

• Managing data security, data access control, deletion, privacy and security 
 

• Managing the data quality 
 



• Data collection using the ETL process 
 

• Managing documents, records and contents 
 

• Creation of reference and master data, and data control andsupervision 
 

• Data and application integration 
 

• Integrated data management, enterprise-ready data creation, fast access and 

analysis, automation and simplification of operations on the data, 

• Data warehouse management 
 

• Maintenance of business intelligence 
 

• Data mining and analytics algorithms. 

 

• Data Source 
 

Applications, programs and tools use data. Sources can be external, such as 

sensors, trackers, web logs, computer systems logs and feeds. Sources can be 

machines, which source data from data-creating programs. 

A source can be internal. Sources can be data repositories, such as database, 

relational database, flat file, spreadsheet, mail server, web server, directory 

services, even text or files such as comma-separated values (CSV) files. Source 

may be a data store for applications 

• Types of Data Source 
 

• structured 
 

• semi-structured 
 

• multi-structured or unstructured 
 

Structured Data Source 
 

• Data source for ingestion, storage and processing can be a file, database or 

streaming data. 

• The source may be on the same computer running a program or a networked 

computer 



 

• Structured data sources are SQL Server, MySQL, Microsoft Access database, 

Oracle DBMS, IBM DB2, Informix, Amazon SimpleDB or a file-collection 

directory at a server. 

Unstructured Data Source 
 

• Unstructured data sources are distributed over high-speed networks. 
 

• The data need high velocity processing. Sources are from distributed file systems. 
 

• The sources are of file types, such as .txt (text file), .csv (comma separated values 

file). 

Data may be as key value pairs, such as hash key-values pairs 

 

Data Sources - Sensors, Signals and GPS 

 

The data sources can be sensors, sensor networks, signals from machines, 

devices, 
 

controllers and intelligent edge nodes of different types in the industry M2M 

communication and the GPS systems. 

Sensors are electronic devices that sense the physical environment. Sensors are 

devices which are used for measuring temperature, pressure, humidity, light 

intensity, traffic in proximity, acceleration, locations, object(s) proximity, 

orientations and magnetic intensity, and other physical states and parameters. 

Sensors play an active role in the automotive industry. 

RFIDs and their sensors play an active role in RFID based supply chain 

management, and tracking parcels, goods and delivery. 

Sensors embedded in processors, which include machine-learning instructions, and 

wireless communication capabilities are innovations. They are sources in IoT 

applications. 

• Data Quality 

 
High quality means data, which enables all the required operations, analysis, 

decisions, planning and knowledge discovery correctly. Five R's as follows: 



• Relevancy, 
 

• recency, 
 

• range, 
 

• robustness 
 

• reliability. 
 

Data Integrity 

 

Data integrity refers to the maintenance of consistency and accuracy in data over its 

usable life. Software, which store, process, or retrieve the data, should maintain the 

integrity of data. Data should be incorruptible 

Factors Affecting Data Quality 
 

• Data Noise 

 

• Outlier 
 

• Missing Value 
 

• Duplicate value 

 

Data Noise 
 

• Noise One of the factors effecting data quality is noise. 
 

• Noise in data refers to data giving additional meaningless information 

besides true (actual/required) information. 

• Noise is random in character, which means frequency with which it occurs is 

variable over time. 

Outlier 
 

• An outlier in data refers to data, which appears to not belong to the dataset.For 

example, data that is outside an expected range. 

• Actual outliers need to be removed from the dataset, else the result will be 

effected by a small or large amount. 



Missing Value, duplicate Value 
 

• Missing Values Another factor effecting data quality is missing values. 

Missing value implies data not appearing in the data set. 

• Duplicate Values Another factor effecting data quality is duplicate values. 

Duplicate value implies the same data appearing two or more times in a dataset. 

• Data Preprocessing 
 

Data pre-processing is an important step at the ingestion layer.Pre-processing is a 

must before data mining and analytics. Pre-processing is also a must before running a 

Machine Learning (ML) algorithm.Pre-processing needs are: 

• Dropping out of range, inconsistent and outlier values 
 

• Filtering unreliable, irrelevant and redundant information 

 

• Data cleaning, editing, reduction and/or wrangling 
 

• Data validation, transformation or transcoding 
 

• ELT processing 
 

Data Cleaning 
 

• Data cleaning refers to the process of removing or correcting incomplete, 

incorrect, inaccurate or irrelevant parts of the data after detecting them. 

• Data cleaning is done before mining of data. Incomplete or irrelevant data may 

result into misleading decisions. 

• Data cleaning tools help in refining and structuring data into usable data. 

Examples of such tools are OpenRefine and DataCleaner. 

Data Enrichment 
 

• "Data enrichment refers to operations or processes which refine, enhance or 

improve the raw data.“ 

• Data editing refers to the process of reviewing and adjusting the acquired datasets. 
 

• The editing controls the data quality. 



 

• Editing methods are (i) interactive, (ii) selective, (iii) automatic, (iv) 

aggregating and (v) distribution. 

Data Reduction 
 

• Data reduction enables the transformation of acquired information into an 

ordered, correct and simplified form. 

• Data wrangling refers to the process of transforming and mapping the data. 

Results from analytics are then appropriate and valuable. 

• mapping enables data into another format, which makes it valuable for analytics 

and data visualizations 

Data format using preprocessing 
 

• Comma-separated values CSV 
 

• Java Script Object Notation (JSON) as batches of object arrays or resource arrays 
 

• Tag Length Value (TLV) 
 

• Key-value pairs 
 

• Hash-key-value pair 
 
 

 

Figure 1.3 Data pre-processing, analysis, visualization, data store export 

Cloud Services 

 
Cloud offers various services. These services can be accessed through a cloud client 

(client 

 

application), such as a web browser, SQL or other client. Figure 1.4 shows data-

store export from machines, files, computers, web servers and web services. The 

data exports to clouds, such as IBM, Microsoft, Oracle, Amazon, Rackspace, TCS, 

Tata Communications or Hadoop cloud services. 

 

 
 

Export of Data to AWS and Rackspace Clouds 

 



Google cloud platform provides a cloud service called BigQuery Figure 1.5 shows 

BigQuery cloud service at Google cloud platform. The data exports from a table or 

partition schema,JSON, CSV or AVRO files from data sources after the pre-

processing. 

 

 

 

functions. Analytics uses Google Analytics 360. BigQuery cloud exports data to a 

Google cloud or cloud backup only. 

• Data Storage and Analysis 

 
This section describe data storage and analysis, and comparison between Big Data 

management and analysis with traditional database management systems. 

 

 

 

• Data Storage and Management: Traditional Systems 
 

• Traditional systems use structured or semi-structured data 
 

• The sources of structured data store are: 
 

• Traditional relational database-management system (RDBMS) data, such as 

MySQL DB2, enterprise server and data warehouse 

SQL 

 

An RDBMS uses SQL (Structured Query Language). SQL is a language for viewing 

or changing (update, insert or append or delete) databases. 

• Create schema, Create schema, which is a structure which contains description of 

objects (base tables, views, constraints) created by a user. The user can describe 

the data and define the data in the database. 

• Create catalog, which consists of a set of schemas which describe the database. 
 

• Data Definition Language (DDL) for the commands which depicts a database, that 

include creating, altering and dropping of tables and establishing the 



constraints.A user can create and drop databases and tables, establish foreign 

keys, create view, stored procedure, functions in the database etc. 

• Data Manipulation Language (DML) for commands that maintain and query the 

database. A user can manipulate (INSERT/UPDATE) and access (SELECT) the 

data. 

• Data Control Language (DCL) for commands that control a database, and 

include administering of privileges and committing. A user can set (grant, add or 

revoke) permissions on tables, procedures and views. 

Distributed Database Management System 

• A distributed DBMS (DDBMS) is a collection of logically interrelated databases 

at multiple system over a computer network. 

• A collection of logically related databases. 

 

• Cooperation between databases in a transparent manner. 

• be 'location independent' which means the user is unaware of where the data is 

located, and it is possible to move the data from one physical location to another 

without affecting the user. 

In-Memory Column Formats Data 

• A columnar format in-memory allows faster data retrieval when only a few 

columns in a table need to be selected during query processing or aggregation. 

• Online Analytical Processing (OLAP) in real-time transaction processing is 

fast when using in-memory column format tables. 

• The CPU accesses all columns in a single instance of access to the memory in 

columnar format in memory data-storage. 

In-Memory Row Format Databases 

• A row format in-memory allows much faster data processing during OLTP 

• Each row record has corresponding values in multiple columns and the on-line 

values store at the consecutive memory addresses in row format. 

Enterprise Data-Store Server and Data Warehouse 



• Enterprise data server use data from several distributed sources which store 

data using various technologies. 

• All data merge using an integration tool. 

• Integration enables collective viewing of the datasets at the data warehouse. 

• Enterprise data integration may also include integration with application(s), 

such as analytics, visualization, reporting, business intelligence and knowledge 

discovery 

Following are some  standardised  business  processes,  as  defined in  the 

Oracle application-integration architecture: 

• Integrating and enhancing the existing systems and processes 

• Business intelligence 

• Data security and integrity 

 

• New business services/products (Web services) 

• Collaboration/knowledge management 

• Enterprise architecture/SOA 

• e-commerce 

• External customer services 

• Supply chain automation/visualization 

• Data centre optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 1.6 Steps 1 to 5 in Enterprise data integration and management with Big- Data 

for high performance computing using local and cloud resources for the analytics, 

applications and services 

• Big Data Storage 

 

NO SQL 

• NoSQL databases are considered as semi-structured data. Big Data Store uses 

NoSQL. NOSQL stands for No SQL or Not Only SQL. 

• The stores do not integrate with applications using SQL. NoSQL is also used in 

cloud data 

 

store. 

• Features ofNoSQL are as follows: 

• It is a class of non-relational data storage systems, and the flexible data models and 

multiple schema: 

• Class consisting of uninterrupted key/value or big hash table 

• Class consisting of unordered keys and using JSON (PNUTS) 

• Class consisting of ordered keys and semi-structured data storage systems 

[BigTable, Cassandra (used in Facebook/Apache) and HBase] 

• Do not use the JOINS 

• Data written at one node can replicate at multiple nodes, therefore Data storage is fault-

tolerant, 

• May relax the ACID rules during the Data Store transactions. 

 
 

 
 

Figure 1.7 Coexistence ofRDBMS for traditional server data, NoSQL and 

Hadoop, Spark and compatible Big Data Clusters 

 

• Big Data Platform 

 



A Big Data platform supports large datasets and volume of data. The data 

generate at a higher velocity, in more varieties or in higher veracity. Managing 

Big Data requires large resources of MPPs, cloud, parallel processing and 

specialized tools. Bigdata platform 

should provision tools and services for: 
 

• storage, processing and analytics, 

 

• developing, deploying, operating and managing Big Data environment, 

 

• reducing the complexity of multiple data sources and integration of 

applications into one cohesive solution, 

• custom development, querying and integration with other systems, and 
 

• the traditional as well as Big Data techniques. 

 

Data management, storage and analytics of Big data captured at the 

companies and services require the following: 

• New innovative non-traditional methods of storage, processing and analytics 

 

• Distributed Data Stores 
 

• Creating scalable as well as elastic virtualized platform (cloud computing) 
 

• Huge volume of Data Stores 

 

• Massive parallelism 
 

• High speed networks 

 

• High performance processing, optimization and tuning 

 

• Data management model based on Not Only SQL or NoSQL 
 

• In-memory data column-formats transactions processing or dual in-memory data 

columns as well as row formats for OLAP and OLTP 

 

• Data retrieval, mining, reporting, visualization and analytics 

 



• Graph databases to enable analytics with social network messages, 

pages and dataanalytics 

• Machine learning or other approaches 

 

• Big data sources: Data storages, data warehouse, Oracle Big Data, 

MongoDB NoSQL,Cassandra NoSQL 

Figure 1.8 Hadoop based Big Data environment 

The Hadoop system packages application-programming model. Hadoop is a scalable and 

reliable parallel computing platform. Hadoop manages Big Data distributed databases. 

Figure 1.8 shows Hadoop based Big Data environment. Small height cylinders 

represent MapReduce and big ones represent the Hadoop. 

 

Big Data Stack 
 

A stack consists of a set of software components and data store units. Applications, 

machine- learning algorithms, analytics and visualization tools use Big Data Stack 

(BDS) at a cloud service, such as Amazon EC2, Azure or private cloud. The stack uses 

cluster of high performance machines. 

Types Example

s 
 

MapReduc

e 

Hadoop, Apache Hive, Apache Pig, Cascading, Cascalog, mrjob (Python MapReduce library), 

Apache S4, MapR, Apple Acunu, Apache Flume, Apache Kafka 

NoSQL 

Databases 
 

MongoDB, Apache CouchDB, Apache Cassandra, Aerospike, Apache HBase, Hypertable 
 

Processing Spark, IBM BigSheets, PySpark, R, Yahoo! Pipes, Amazon Mechanical Turk, Datameer, 

Apache Solr/Lucene, ElasticSearch 
 

Servers Amazon ECZ, S3, GoogleQuery, Google App Engine, AWS Elastic Beanstalk, Salesforce 

Heroku 

Storage Hadoop Distributed File System, Amazon S3, Mesos 
 

 

 
• Big Data Analytics 
  

Table 1.5 Tools for Big Data environment 

 



Data Analytics can be formally defined as the statistical and mathematical data analysis 

that clusters, segments, ranks and predicts future possibilities. An important feature of 

data analytics is its predictive, forecasting and prescriptive capability. Analytics uses 

historical data and forecasts new values or results. Analytics suggests techniques which 

will provide the most efficient and beneficial results for an enterprise 

Analysis of data is a process of inspecting, cleaning, transforming and modeling data 

with the goal of discovering useful information, suggesting conclusions and supporting 

decision making 

Phases in analytics 

 

Analytics has the following phases before deriving the new facts, providing 

business intelligence and generating new knowledge. 

• Descriptive analytics enables deriving the additional value from visualizations 

 

andreports 

• Predictive analytics is advanced analytics which enables extraction of 

new facts andknowledge, and then predicts/forecasts 

• Prescriptive analytics enable derivation of the additional value and 

undertake betterdecisions for new option(s) to maximize the profits 

 

Berkely Data Analysis Stack(BDAS) 
 

Berkeley Data Analytics Stack (BDAS) consists of data processing, data 

management and resource management layers. Following list these: 

1. Applications, AMP-Genomics and Carat run at the BDAS. Data processing 

software component provides in-memory processing which processes the data 

efficiently across the frameworks. AMP stands for Berkeley's Algorithms, 

Machines and PeoplesLaboratory. 

 

• Big Data Applications 

Big Data in Marketing and Sales 



Data are important for most aspect of marketing, sales and advertising. Customer Value 

(CV) depends on three factors - quality, service and price. Big data analytics deploy 

large volume of data to identify and derive intelligence using predictive models about the 

individuals. The facts enable marketing companies to decide what products to sell. 

A definition of marketing is the creation, communication and delivery of value to 

customers. Customer (desired) value means what a customer desires from a product. 

Customer (perceived) value means what the customer believes to have received from a 

product after purchase of the product. Customer value analytics (CVA) means analyzing 

what a customer really needs. CVA makes it possible for leading marketers, such as 

Amazon to deliver the consistent customer experiences. 

Big Data Analytics in Detection of Marketing Frauds 

Big Data analytics enable fraud detection. Big Data usages has the following features-

for enabling detection and prevention of frauds: 

• Fusing of existing data at an enterprise data warehouse with data from sources such 

as social media, websites, biogs, e-mails, and thus enriching existing data 

• Using multiple sources of data and connecting with many applications 
 

• Providing greater insights using querying of the multiple source data 
 

• Analyzing data which enable structured reports and visualization 
 

• Providing high volume data mining, new innovative applications and thus 

leading to new business intelligence and knowledge discovery 

Big Data Risks 

 

Large volume and velocity of Big Data provide greater insightsbut also associate risks 

with the data used. Data included may be erroneous, less accurate or far from reality. 

Analytics introduces new errors due to such data. 

Five data risks, described by Bernard Marr are data security, data privacy breach, costs 

affecting 

 

profits, bad analytics and bad data 

 

Big Data Credit Card Risk Management 



 

Financial institutions, such as banks, extend loans to industrial and household sectors. 

These institutions in many countries face credit risks, mainly risks of (i) loan defaults, 

(ii) timely return of interests and principal amount. Financing institutions are keen to get 

insights into the following: 

• Identifying high credit rating business groups and individuals, 

 

• Identifying risk involved before lending money 
 

• Identifying industrial sectors with greater risks 

 

• Identifying types of employees (such as daily wage earners in construction 

sites) and businesses (such as oil exploration) with greater risks 

• Anticipating liquidity issues (availability of money for further issue of credit 

and rescheduling credit installments) over the years. 

Big Data in Healthcare 
 

Big Data analytics in health care use the following data sources:clinical records, (ii) 

pharmacy records, (3) electronic medical records (4) diagnosis logs and notes and (v) 

additional data, such as deviations from person usual activities, medical leaves from 

job, social interactions. Healthcare analytics using Big Data can facilitate the 

following: 

• Provisioning of value-based and customer-centric healthcare, 

 

• Utilizing the 'Internet of Things' for health care 
 

• Preventing fraud, waste, abuse in the healthcare industry and reduce 

healthcare costs (Examples of frauds are excessive or duplicate claims for 

clinical and hospital treatments. Example of waste is unnecessary tests. 

Abuse means unnecessary use of medicines, such as tonics and testing 

facilities.) 

• Improving outcomes 
 

• Monitoring patients in real time. 

 

Big Data in Medicine 



 

Big Data analytics deploys large volume of data to identify and derive intelligence 

using predictive models about individuals. Big Data driven approaches help in 

research in medicine which can help patients 

Following are some findings: building the health profiles of individual patients and 

predicting models for diagnosing better and offer better treatment, 

Aggregating large volume and variety of information around from multiple sources 

the DNAs, proteins, and metabolites to cells, tissues, organs, organisms, and 

ecosystems, that can enhance the understanding of biology of diseases. Big data 

creates patterns and models by data mining and help in better understanding and 

research, 

Deploying wearable devices data, the devices data records during active as well as 

inactive periods, provide better understanding of patient health, and better risk 

profiling the user for certain diseases. 

Big Data in Advertising 
 

The impact of Big Data is tremendous on the digital advertising industry. The digital 

advertising industry sends advertisements using SMS, e-mails, WhatsApp, Linkedln, 

Facebook, Twitter and other mediums. 

Big Data captures data of multiple sources in large volume, velocity and variety of 

data unstructured and enriches the structured data at the enterprise data warehouse. 

Big data real time analytics provide emerging trends and patterns, and gain 

actionable insights for facing competitions from similar products. The data helps 

digital advertisers to discover new relationships, lesser competitive regions and 

areas. 

Success from advertisements depend on collection, analyzing and mining. The new 

insights enable the personalization and targeting the online, social media and 

mobile for advertisements called hyper-localized advertising. 

 



Advertising on digital medium needs optimization. Too much usage can also effect 

negatively. Phone calls, SMSs, e-mail-based advertisements can be nuisance if sent 

without appropriate researching on the potential targets. The analytics help in this 

direction. The usage of Big Data after appropriate filtering and elimination is crucial 

enabler of BigData Analytics with appropriate data, data forms and data handling in the 

right manner. 

 
 

 

Mod

ule -

2 

Introduction to 

Hadoop 

• Big Data Programming Model 

A programming model is centralized computing of data in which the data is transferred from 

multiple distributed data sources to a central server. Analyzing, reporting, visualizing, 

business- intelligence tasks compute centrally. Data are inputs to the central server. 

Another programming model is distributed computing that uses the databases at multiple 

computing nodes with data sharing between the nodes during computation.  Distributed 

computing in this model requires the cooperation (sharing) between the DBs in a transparent 

manner. Transparent means that each user within the system may access all the data within 

all databases as if they were a single database. A second requirement is location 

independence. Analysis results should be independent of geographical locations. The access 

of one computing node to other nodes may fail due to a single link failure. 

Distributed pieces of codes as well as the data at the computing nodes Transparency 

between data nodes at computing nodes do not fulfil for Big Data when distributed 

computing takes place using data sharing between local and remote. Following are the reasons 

for this: 

• Distributed data storage systems do not use the concept of joins. 

• Data need to be fault-tolerant and data stores should take into account the possibilities 

of network failure. When data need to be partitioned into data blocks and written at one  set 



of nodes, then those blocks need replication at multiple nodes. This takes care of possibilities 

of network faults. When a network fault occurs, then replicated node makes the data 

available. 

Big Data follows a theorem known as the CAP theorem. The CAP states that out of three 

properties (consistency, availability and partitions), two must at least be present for 

applications, services and processes. 

• Big Data Store Model 
 

A model for Big Data store is as follows: 

 

Data store in file system consisting of data blocks (physical division of data). The data 

blocks are distributed across multiple nodes. Data nodes are at the racks of a cluster. Racks 

are scalable. 

 

A Rack has multiple data nodes (data servers), and each cluster is arranged in a number of racks. 
 

Data Store model of files in data nodes in racks in the clusters Hadoop system uses the data 

store model in which storage is at clusters, racks, data nodes and data blocks. Data blocks 

replicate at the DataNodes such that a failure of link leads to access of the data block from 

the other nodes replicated at the same or other racks. 

• Big Data Programming Model 
 

Big Data programming model is that application in which application jobs and tasks (or sub- 

tasks) is scheduled on the same servers which store the data for processing. 

• Hadoop and its echo system 

Hadoop is a computing environment in which input data stores, processes and stores the 

results. The environment consists of clusters which distribute at the cloud or set of servers. 

Each cluster consists of a string of data files constituting data blocks. The toy named Hadoop 

consisted of a stuffed elephant. The Hadoop system cluster stuffs files in data blocks. The 

complete system consists of a scalable distributed set of clusters. 

Infrastructure consists of cloud for clusters. A cluster consists of sets of computers or PCs. 

The Hadoop platform provides a low cost Big Data platform, which is open source and uses 

cloud services. Tera Bytes of data processing takes just few minutes. Hadoop enables 

distributed processing of large datasets (above 10 million bytes) across clusters of computers 



using a programming model called MapReduce. The system characteristics are scalable, self- 

manageable, self-healing and distributed file system. 

Scalable means can be scaled up (enhanced) by adding storage and processing units as per 

the requirements. Self-manageable means creation of storage and processing resources which 

are used, scheduled and reduced or increased with the help of the system itself. Self-healing 

means that in case of faults, they are taken care of by the system itself. Self-healing enables 

functioning and resources availability. Software detect and handle failures at the task level. 

Software enable the service or task execution even in case of communication or node failure. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Core components of 

Hadoop The Hadoop core components of the framework are: 

Hadoop Common - The common module contains the libraries and utilities that are 

required by the other modules of Hadoop. For example, Hadoop common provides various 

components and interfaces for distributed file system and general input/output. This includes 

serialization, Java RPC (Remote Procedure Call) and file-based data structures. 

Hadoop Distributed File System (HDFS) - A Java-based distributed file system which can 

store all kinds of data on the disks at the clusters. 

MapReduce vl - Software programming model in Hadoop 1 using Mapper and Reducer. The 

vl processes large sets of data in parallel and in batches. 

YARN - Software for managing resources for computing.  The user application tasks or sub- 

tasks run in parallel at the Hadoop, uses scheduling and handles the requests for the 

resources in distributed running of the tasks. 



MapReduce v2 - Hadoop 2 YARN-based system for parallel processing of large datasets and 

distributed processing of the application tasks. 

2.2.2 Features of Hadoop 
 

Hadoop features are as follows: 

 

• Fault-efficient scalable, flexible and modular design which uses simple and modular 

programming model. The system provides servers at high scalability. The system is scalable 

by adding new nodes to handle larger data. Hadoop proves very helpful in storing, 

managing, 

 

processing and analyzing Big Data. 
 

• Robust design of HDFS: Execution of Big Data applications continue even when an 

individual server or cluster fails. This is because of Hadoop provisions for backup (due to 

replications at least three times for each data block) and a data recovery mechanism. HDFS 

thus has high reliability. 

• Store and process Big Data: Processes Big Data of 3V characteristics. 

 

• Distributed clusters computing model with data locality: Processes Big Data at high 

speed as the application tasks and sub-tasks submit to the DataNodes. One can achieve more 

computing power by increasing the number of computing nodes. The processing splits across 

multiple DataNodes (servers), and thus fast processing and aggregated results. 

• Hardware fault-tolerant: A fault does not affect data and application processing. If a 

node goes down, the other nodes take care of the residue. This is due to multiple copies of all 

data blocks which replicate automatically. Default is three copies of data blocks. 

• Open-source framework: Open source access and cloud services enable large data store. 

Hadoop uses a cluster of multiple inexpensive servers or the cloud. 

• Java and Linux based: Hadoop uses Java interfaces. Hadoop base is Linux but has its own 

set of shell commands support. 

2.2.3. Hadoop Eco system Components 
 

The four layers in Figure 2.2 are as follows: 

 

• Distributed storage layer 
 



• Resource-manager layer for job or application sub-tasks scheduling and execution 

 

• Processing-framework layer, consisting of Mapper and Reducer for the MapReduce 

process-flow. 

• APis at application support layer (applications such as Hive and Pig). The codes 

communicate and run using MapReduce or YARN at processing framework layer. Reducer 

output communicate to APis (Figure 2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Hadoop main components and ecosystem components 
 

AVRO enables data serialization between the layers. Zookeeper enables coordination among 

layer components. 

The holistic view of Hadoop architecture provides an idea of implementation of Hadoop 

components of the ecosystem. Client hosts run applications using Hadoop ecosystem 

projects, such as Pig, Hive and Mahout. 

• HADOOP DISTRIBUTED FILE SYSTEM 

HDFS is a core component of Hadoop. HDFS is designed to run on a cluster of computers 

and servers at cloud-based utility services. 

HDFS stores Big Data which may range from GBs (1 GB= 230 B) to PBs (1 PB= 
 



1015 B, nearly the 250 B). HDFS  stores the  data in a distributed manner in order to 

compute fast. The distributed data store in HDFS stores data in any format regardless of 

schema. 

• HDFS Storage 
 

Hadoop data store concept implies storing the data at a number of dusters. Each cluster has a 

number of data stores,  called racks. Each rack stores a number of DataNodes. Each 

DataNode has a large number of data blocks. The racks distribute across a cluster. The nodes 

have processing and storage capabilities. The nodes have the data in data blocks to run the 

application tasks. The data blocks replicate by default at least on three DataNodes in same 

or remote nodes. 

 

Data at the stores enable running the distributed applications including analytics, data 

mining, OLAP using the clusters. A file, containing the data divides into data blocks. A  data 

block default size is 64 MBs 

Hadoop HDFS features are as follows 

 

• Create, append, delete, rename and attribute modification functions 
 

• Content of individual file cannot be modified or replaced but appended with new data at 
 

 

Consider a data storage for University students. Each student data, stuData which is in a file 

of size less than 64 MB (1 MB= 220 B). A data block stores the full file data for a student of 

stuData_idN, whereN = 1 to 500. 

• How the files of each student will be distributed at a Hadoop cluster? How many 

student data can be stored at one cluster? Assume that each rack has two DataNodes for 

processing each 

 

of 64 GB  (1 GB= 230 B) memory. Assume that cluster consists of 120 racks, and thus 240 

DataNodes. 

• What is the total memory capacity of the cluster in TB ((1 TB= 240 B) and 

DataNodes in each rack? 



• Show the distributed blocks for students with ID= 96 and 1025. Assume default 

replication in the DataNodes = 3. 

• What shall be the changes when a stuData file sizes 128 MB? 

 
SOLUTION 

• Data block default size is 64 MB. Each students file size is less than 64MB.  

Therefore, for each student file one data block suffices. A data block is in a DataNode. 

Assume, for simplicity, each rack has two nodes each of memory capacity = 64 GB. Each 

node can thus store 64 GB/64MB = 1024 data blocks = 1024 student files. Each rack can thus 

store 2 x 64 GB/64MB 

= 2048 data blocks = 2048 student files. Each data block default replicates three times in the 

DataNodes. Therefore, the number of students whose data can be stored in the cluster = 

number of racks multiplied by number of files divided by 3 = 120 x 2048/3 = 81920. 

Therefore, the maximum number of 81920 stuData_IDN files can be distributed per cluster, 

with N = 1 to 81920. 

• Total memory capacity of the cluster = 120 x 128 MB = 15360 GB = 15 

TB. Total memory capacity of each DataNode in each rack= 1024 x 64 MB= 64 GB. 

• Figure 2.3 shows a Hadoop cluster example, and the replication of data blocks in 

racks for two students of IDs 96 and 1025. Each stuData file stores at two data blocks, 

of capacity 64 MB each. 

• Changes will be that each node will have half the number of data blocks. 

 

• Hadoop Physical organization 
 

Figure 2.4 shows the client, master NameNode, primary and secondary MasterNodes and 

slave nodes in the Hadoop physical architecture. Clients as the users run the application with 

the help of Hadoop ecosystem projects. For example, Hive, Mahout and Pig are the 

ecosystem's projects. They are not required to be present at the Hadoop cluster. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.4 The client, master NameNode, MasterNodes and slave nodes 

A single MasterNode provides HDFS, MapReduce and Hbase using threads in small to 

medium sized clusters. When the cluster size is large, multiple servers are used, such as to 

balance the load. The secondary NameNode provides NameNode management services and 

Zookeeper is used by HBase for metadata storage. 

The MasterNode fundamentally plays the role of a coordinator. The MasterNode receives 

client connections, maintains the description of the global file system namespace, and the 

allocation of file blocks. It also monitors the state of the system in order to detect any failure. 

The Masters consists of three components NameNode, Secondary NameNode and 

JobTracker.  The NameNode stores all the file system related information such as: 

• The file section is stored in which part of the cluster 

• Last access time for the files 

• User permissions like which user has access to the file. 

Secondary NameNode  is  an  alternate  for  NameNode.  Secondary  node  keeps  a  copy  of 

 

NameNode meta data. Thus, stored meta data can be rebuilt easily, in case ofNameNode failure. 

TheJobTracker coordinates the parallel processing of data. 

• Hadoop 2 

• Single Name  Node failure in Hadoop 1 is an operational limitation. 

• Scaling up was restricted to scale beyond a few thousands of DataNodes and 

number of Clusters. 



• Hadoop 2 provides the multiple NameNodes which enables higher resources 

availability 

• HDFS commands 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

• MAPREDUCE FRAMEWORK AND PROGRAMMING MODEL 
 

Mapper means software for doing the assigned task after organizing the data blocks 

imported using the keys. A key specifies in a command line of Mapper. The command 

maps the key to the data, which an application uses. 

Reducer means software for reducing the mapped data by using the aggregation, query or 

user- specified function. The reducer provides a concise cohesive response for the application. 

Aggregation function means the function that groups the values of multiple rows together to 

 

result a single value of more significant meaning or measurement. For example, function 

such as count, sum, maximum, minimum, deviation and standard deviation. 

Querying function means a function that finds the desired values. For example, function for 

finding a best student of a class who has shown the best performance in examination. 

MapReduce allows writing applications to process reliably the huge amounts of  data,  in 

parallel, on large clusters of servers. The cluster size does not limit as such to process in 



parallel. The parallel programs of MapReduce are useful for performing large scale data 

analysis using multiple machines in the cluster. 

Features o fMapReduce framework are as follows: 

 

• Provides automatic parallelization and distribution of computation based on 

several processors 

• Processes data stored on distributed clusters of DataNodes and racks 

• Allows processing large amount of data in parallel 

• Provides scalability for usages of large number of servers 

• Provides Map Reduce batch-oriented programming model in Hadoop version 1 

• Provides additional processing modes in Hadoop 2 YARN-based system and 

enables required parallel processing. For example, for queries, graph databases, 

streaming data, messages, real-time OLAP and ad hoc analytics with Big Data 

3V characteristics. 

• HADOOP YARN 

• YARN is a resource a management platform. It manages the computer resources. 

• YARN manages the schedules for running the sub tasks. Each sub tasks 

uses the resources in the allotted interval time. 

• YARN separates the resources management and processing components. 

• It stands for YET ANOTHER RESOURCE NEGOTIATOR , it manages and 

allocates resources for the application sub tasks and submit the resources for 

them in the Hadoop system. 

 

 

Hadoop 2 Execution Model 

 

 

 

 

 

 

 



 

 

 

 

 

 
 

Figure 2.5 YARN based Execution Model 

The figure shows the YARN components-Client, Resource Manager (RM), Node  Manager 

(NM), Application Master (AM) and Containers. 

Figure 2.5 also illustrates YARN components namely, Client, Resource Manager (RM), Node 

Manager (RM), Application Master (AM) and Containers. 

List of actions of YARN resource allocation and scheduling functions is as follows: 
 

A MasterNode has two components: (i) Job History Server and (ii) Resource Manager(RM). 

 

A Client Node submits the request of an application to the RM. The RM is the master. One 

RM exists per cluster. The RM keeps information of all the slave NMs. Information is about 

the location (Rack Awareness) and the number of resources (data blocks and  servers)  they 

have. The RM also renders the  Resource  Scheduler service that decides how to assign the 

resources. It, therefore, performs resource management as well as scheduling. 

Multiple NMs are at a cluster. An NM creates an AM instance (AMI) and starts up. The AMI 

initializes itself and registers with the RM. Multiple AMis can be created in an AM. 

The AMI performs role of an Application Manager (ApplM), that estimates the resources 

requirement for running an application program or sub- task. The ApplMs send their 

requests 

 

for the necessary resources to the RM. Each NM includes several containers for uses by the 

subtasks of the application. 

NM is a slave of the infrastructure. It signals whenever it initializes. All active NMs send the 

controlling signal periodically to the RM signaling their presence. 

• HADOOP ECOSYSTEM TOOLS 
 

ZooKeeper- 

Coordination 

 

Provisions high-performance coordination service for distributed 

running of applications and tasks 



service 

Avro-Data 

serialization 

and transfer 

utility 

 
Provisions data serialization during data transfer between application and 

processing layers 

 

Oozie Provides a way to package and bundles multiple coordinator and 

workflow jobs and manage the lifecycle of those jobs 

Sqoop 

(SQL-

to- 

Hadoop)-A 

data-transfer 

software 

 

Provisions for data-transfer between data stores such as relational DBs and 

Hadoop 

Flume - 

Large data 

transfer 

utility 

Provisions for reliable data transfer and provides for recovery in case of 

failure. Transfers large amount of data in applications, such as related to 

social-media messages 

Ambari-A 

web-based tool 
Provisions, monitors, manages, and viewing of functioning of the 

cluster, MapReduce, Hive and Pig APis 

Chukwa-A 

data collection 

system 

 

Provisions and manages data collection system for large and distributed 

systems 

HBase-A 

structured data 

store using 

database 

 
Provisions a scalable and structured database for large tables (Section 

2.6.3) 

Cassandra - A 

database 
Provisions scalable and fault-tolerant database for multiple masters 

(Section 3.7) 
 
 

Hive -A data 

warehouse 

system 

Provisions data aggregation, data-summarization, data warehouse 

infrastructure, ad hoc (unstructured) querying and SQL-like scripting 

language for query processing using HiveQL (Sections 2.6.4, 4.4 and 4.5) 

Pig-A high- 

level dataflow 

language 

 

Provisions dataflow (DF) functionality and the execution framework for 

parallel computations 

Mahout-A Provisions scalable machine learning and library functions for data 

mining and analytics 
 





 

 





 

 





 

 





 

 





 

 





 

 





 

 







 

 





 

 

 

 

 

 

 
In This Chapter: 

  

Module 2 

1. Essential Hadoop Tools 

 

The Pig scripting tool is introduced as a way to quickly examine data both locally and on a Hadoop cluster. 

The Hive SQL-like query tool is explained using two examples. 

The Sqoop RDBMS tool is used to import and export data from MySQL to/from HDFS. 

The Flume streaming data transport utility is configured to capture weblog data into HDFS. The Oozie 

workflow manager is used to run basic and complex Hadoop workflows. 

The distributed HBase database is used to store and access data on a Hadoop cluster. 

 
USING APACHE PIG 

Apache Pig is a high-level language that enables programmers to write complex MapReduce 

transformations using a simple scripting language. Pig Latin (the actual language) defines a set 

of transformations on a data set such as aggregate, join, and sort. 

Apache Pig has several usage modes. 

• The first is a local mode in which all processing is done on the local machine. 

• The non-local (cluster) modes are MapReduce and Tez. These modes execute the job on 

the cluster using either the MapReduce engine or the optimized Tez engine. 

There are also interactive and batch modes available; they enable Pig applications to be developed 

locally in interactive modes, using small amounts of data, and then run at scale on the cluster in a 

production mode. The modes are summarized in Table 7.1. 

 

 

 

 

 

 

 

Pig Example Walk-Through 

  
 
Table 7.1 Apache Pig Usage Modes 
 



In this simple example, Pig is used The following example assumes the user is hdfs, but any valid 

user with access to HDFS can run the example. 

To begin the example, copy the passwd file to a working directory for local Pig operation: 

$ cp /etc/passwd . 

 

Next, copy the data file into HDFS for Hadoop MapReduce operation: 
 

$ hdfs dfs -put passwd passwd 

 

You can confirm the file is in HDFS by entering the following command: 
hdfs dfs -ls passwd 

-rw-r--r--  2 hdfs hdfs 2526 2015-03-17 11:08 passwd 

In the following example of local Pig operation, all processing is done on the local machine 

(Hadoop is not used). First, the interactive command line is started: 

 

$ pig -x local 

 
If Pig starts correctly, you will see a grunt> prompt. Next, enter the following commands to load 

the passwd file and then grab the user name and dump it to the terminal. Note that Pig commands 

must end with a semicolon (;). 

grunt> A = load 'passwd' using PigStorage(':'); grunt> 

B = foreach A generate $0 as id; grunt> dump B; 
 

The processing will start and a list of user names will be printed to the screen. To exit the 

interactive session, enter the command quit. 

$ grunt> quit 

 

To use Hadoop MapReduce, start Pig as follows (or just enter pig): 

$ pig -x mapreduce 

 

The same sequence of commands can be entered at the grunt> prompt. You may wish to change 

the $0 argument to pull out other items in the passwd file. Also, because we are running this 

application under Hadoop, make sure the file is placed in HDFS. 

If you are using the Hortonworks HDP distribution with tez installed, the tez engine can be used 

as follows: 

$ pig -x tez 

 

Pig can also be run from a script. This script, which is repeated here, is designed to do the same 

things as the interactive version: 

/* id.pig */ 

A = load 'passwd' using PigStorage(':'); -- load the passwd file B = 

foreach A generate $0 as id; -- extract the user IDs 

dump B; 

store B into 'id.out'; -- write the results to a directory name id.out 
 

Comments are delineated by /* */ and -- at the end of a line. First, ensure that the id.out directory 

is not in your local directory, and then start Pig with the script on the command line: 

$ /bin/rm -r id.out/ 

$ pig -x local id.pig 



 

If the script worked correctly, you should see at least one data file with the results and a zero- 

length file with the name _SUCCESS. To run the MapReduce version, use the same procedure; 

the only difference is that now all reading and writing takes place in HDFS. 

$ hdfs dfs -rm -r id.out 

$ pig id.pig 

USING APACHE HIVE 

Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data 

summarization, ad hoc queries, and the analysis of large data sets using a SQL-like language called 

HiveQL. Hive offers the following features: 

Tools to enable easy data extraction, transformation, and loading (ETL) A 

mechanism to impose structure on a variety of data formats 

 

Access to files stored either directly in HDFS or in other data storage systems such as HBase 

Query execution via MapReduce and Tez (optimized MapReduce) 

Hive Example Walk-Through 

To start Hive, simply enter the hive command. If Hive starts correctly, you should get a hive> 

prompt. 

$ hive 

(some messages may show up here) hive> 
 

As a simple test, create and drop a table. Note that Hive commands must end with a semicolon 

(;). 

hive> CREATE TABLE pokes (foo INT, bar STRING); 

OK 

Time taken: 1.705 seconds hive> 

SHOW TABLES; OK 

pokes 

Time taken: 0.174 seconds, Fetched: 1 row(s) hive> 

DROP TABLE pokes; 

OK 

Time taken: 4.038 seconds 
 

A more detailed example can be developed using a web server log file to summarize message 

types. First, create a table using the following command: 

hive> CREATE TABLE logs(t1 string, t2 string, t3 string, t4 string, t5 string, t6 string, t7 string) ROW FORMAT 

DELIMITED FIELDS TERMINATED BY ' '; 

OK 

Time taken: 0.129 seconds 

 

Next, load the data—in this case, from the sample.log file. Note that the file is found in the local 

directory and not in HDFS. 

hive> LOAD DATA LOCAL INPATH 'sample.log' OVERWRITE INTO TABLE logs; 

Loading data to table default.logs 

Table default.logs stats: [numFiles=1, numRows=0, totalSize=99271, rawDataSize=0] OK 

Time taken: 0.953 seconds 
 



Finally, apply the select step to the file. Note that this invokes a Hadoop MapReduce operation. 

The results appear at the end   of the   output (e.g.,   totals for the message types DEBUG, 

ERROR, and so on). 

hive> SELECT t4 AS sev, COUNT(*) AS cnt FROM logs WHERE t4 LIKE '[%' GROUP BY t4; 

Query ID = hdfs_20150327130000_d1e1a265-a5d7-4ed8-b785-2c6569791368 

Total jobs = 1 Launching Job 

1 out of 1 

Number of reduce tasks not specified. Estimated from input data size: 1 In order 

to change the average load for a reducer (in bytes): 

set hive.exec.reducers.bytes.per.reducer=<number> In 

order to limit the maximum number of reducers: 

 

set hive.exec.reducers.max=<number> 

In order to set a constant number of reducers: 

set mapreduce.job.reduces=<number> 

Starting Job = job_1427397392757_0001, Tracking URL = http://norbert:8088/proxy/ application_1427397392757_0001/ 

Kill Command = /opt/hadoop-2.6.0/bin/hadoop job -kill job_1427397392757_0001 Hadoop 

job information for Stage-1: number of mappers: 1; number of reducers: 1 2015-03-27 

13:00:17,399 Stage-1 map = 0%, reduce = 0% 

2015-03-27 13:00:26,100 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.14 sec 

2015-03-27 13:00:34,979 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 4.07 sec 

MapReduce Total cumulative CPU time: 4 seconds 70 msec 

Ended Job = job_1427397392757_0001 

MapReduce Jobs Launched: 

Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 4.07 sec HDFS Read: 106384 HDFS Write: 

63 SUCCESS 

Total MapReduce CPU Time Spent: 4 seconds 70 msec OK 

[DEBUG] 434 

[ERROR] 3 

[FATAL] 1 

[INFO] 96 

[TRACE] 816 

[WARN] 4 

Time taken: 32.624 seconds, Fetched: 6 row(s) 
 

To exit Hive, simply type exit; 

hive> exit; 

 
A More Advanced Hive Example 

In this example, 100,000 records will be transformed from userid, movieid, rating, unixtime to 

userid, movieid, rating, and weekday using Apache Hive and a Python program (i.e., the UNIX 

time notation will be transformed to the day of the week). The first step is to download and 

extract the data: 

$ wget http://files.grouplens.org/datasets/movielens/ml-100k.zip 

$ unzip ml-100k.zip 

$ cd ml-100k 
 

Before we use Hive, we will create a short Python program called weekday_mapper.py with 

following contents: 

import sys import 

datetime 

 

for line in sys.stdin: 

http://norbert:8088/proxy/
http://files.grouplens.org/datasets/movielens/ml-100k.zip


line = line.strip() 

userid, movieid, rating, unixtime = line.split('\t') 

weekday   = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() 

print '\t'.join([userid, movieid, rating, str(weekday)])LOAD DATA LOCAL INPATH './u.data' 

OVERWRITE INTO TABLE u_data; 

Next, start Hive and create the data table (u_data) by entering the following at the hive> 

prompt: 

CREATE TABLE u_data ( 

userid INT, 

movieid INT, 

 

rating INT, unixtime 

STRING) 

ROW FORMAT DELIMITED 

FIELDS TERMINATED BY '\t' 

STORED AS TEXTFILE; 

Load the movie data into the table with the following command: 

hive> LOAD DATA LOCAL INPATH './u.data' OVERWRITE INTO TABLE u_data; 
 

The number of rows in the table can be reported by entering the following command: 

hive > SELECT COUNT(*) FROM u_data; 

 

This command will start a single MapReduce job and should finish with the following lines: 

... 

MapReduce Jobs Launched: 

Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 2.26 sec HDFS Read: 1979380 HDFS 

Write: 7 SUCCESS 

Total MapReduce CPU Time Spent: 2 seconds 260 msec OK 

100000 

Time taken: 28.366 seconds, Fetched: 1 row(s) 

Now that the table data are loaded, use the following command to make the new table 

(u_data_new): 

hive> CREATE TABLE u_data_new ( 

userid INT, 

movieid INT, 

rating INT, 

weekday INT) 

ROW FORMAT DELIMITED 

FIELDS TERMINATED BY '\t'; 

The next command adds the weekday_mapper.py to Hive resources: 

hive> add FILE weekday_mapper.py; 
 

Once weekday_mapper.py is successfully loaded, we can enter the transformation query: 

hive> INSERT OVERWRITE TABLE u_data_new 

SELECT 

TRANSFORM (userid, movieid, rating, unixtime) 

USING 'python weekday_mapper.py' 

AS (userid, movieid, rating, weekday) 

FROM u_data; 

If the transformation was successful, the following final portion of the output should be displayed: 



... 

Table default.u_data_new stats: [numFiles=1, numRows=100000, totalSize=1179173, 

rawDataSize=1079173] 

MapReduce Jobs Launched: 

Stage-Stage-1: Map: 1 Cumulative CPU: 3.44 sec HDFS Read: 1979380 HDFS Write: 1179256 

SUCCESS 

Total MapReduce CPU Time Spent: 3 seconds 440 msec OK 

Time taken: 24.06 seconds 

 

The final query will sort and group the reviews by weekday: 

hive> SELECT weekday, COUNT(*) FROM u_data_new GROUP BY weekday; 
 

Final output for the review counts by weekday should look like the following: 

... 

MapReduce Jobs Launched: 

Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 2.39 sec HDFS Read: 1179386 HDFS 

Write: 56 SUCCESS 

Total MapReduce CPU Time Spent: 2 seconds 390 msec OK 

1 13278 

2 14816 

3 15426 

4 13774 

5 17964 

6 12318 

7 12424 

Time taken: 22.645 seconds, Fetched: 7 row(s) 

As shown previously, you can remove the tables used in this example with the DROP TABLE 

command. In this case, we are also using the -e command-line option. Note that queries can be 

loaded from files using the -f option as well. 

$ hive -e 'drop table u_data_new' 

$ hive -e 'drop table u_data' 

 

USING APACHE SQOOP TO ACQUIRE RELATIONAL DATA 

Sqoop is a tool designed to transfer data between Hadoop and relational databases. You can use 

Sqoop to import data from a relational database management system (RDBMS) into the Hadoop 

Distributed File System (HDFS), transform the data in Hadoop, and then export the data back into 

an RDBMS. 

Sqoop can be used with any Java Database Connectivity (JDBC)–compliant database and has been 

tested on Microsoft SQL Server, PostgresSQL, MySQL, and Oracle. 

Apache Sqoop Import and Export Methods 

Figure 7.1 describes the Sqoop data import (to HDFS) process. The data import is done in two 

steps. In the first step, shown in the figure, Sqoop examines the database to gather the necessary 

metadata for the data to be imported. The second step is a map-only (no reduce step) Hadoop job 

that Sqoop submits to the cluster. This job does the actual data transfer using the metadata 



captured in the previous step. Note that each node doing the import must have access to the 

database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Two-step Apache Sqoop data import method (Adapted from Apache Sqoop Documentation) 
 

The imported data are saved in an HDFS directory. Sqoop will use the database name for the 

directory, or the user can specify any alternative directory where the files should be populated. 

By default, these files contain comma-delimited fields, with new lines separating different records. 

You can easily override the format in which data are copied over by explicitly specifying the field 

separator and record terminator characters. Once placed in HDFS, the data are ready for 

processing. 

Data export from the cluster works in a similar fashion. The export is done in two steps, as shown 

in Figure 7.2. As in the import process, the first step is to examine the database for metadata. The 

export step again uses a map-only Hadoop job to write the data to the database. Sqoop divides the 

input data set into splits, then uses individual map tasks to push the splits to the database. Again, 

this process assumes the map tasks have access to the database. 

 

 

Figure 7.2 Two-step Sqoop data export method (Adapted from Apache Sqoop Documentation) 
 

Apache Sqoop Version Changes 

Sqoop Version 1 uses specialized connectors to access external systems. These connectors are 

often optimized for various RDBMSs or for systems that do not support JDBC. Connectors are 

plug-in components based on Sqoop’s extension framework and can be added to any existing 



Sqoop installation. Once a connector is installed, Sqoop can use it to efficiently transfer data 

between Hadoop and the external store supported by the connector. By default, Sqoop version 1 

includes connectors for popular databases such as MySQL, PostgreSQL, Oracle, SQL Server, and 

DB2. It also supports direct transfer to and from the RDBMS to HBase or Hive. 

In contrast, to streamline the Sqoop input methods, Sqoop version 2 no longer supports specialized 

connectors or direct import into HBase or Hive. All imports and exports are done through the 

JDBC interface. Table 7.2 summarizes the changes from version 1 to version 2. Due to these 

changes, any new development should be done with Sqoop version 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.2 Apache Sqoop Version Comparison 
 

Sqoop Example Walk-Through 

The following simple example illustrates use of Sqoop 

 

Step 1: Load Sample MySQL Database 

 
$ wget http://downloads.mysql.com/docs/world_innodb.sql.gz 

$ gunzip world_innodb.sql.gz 

 
Next, log into MySQL (assumes you have privileges to create a database) and import the 

desired database by following these steps: 

 

$ mysql -u root -p 

mysql> CREATE DATABASE world; 

mysql> USE world; 

mysql> SOURCE world_innodb.sql; 

mysql> SHOW TABLES; 

+- + 

| Tables_in_world | 

+- + 

| City | 

http://downloads.mysql.com/docs/world_innodb.sql.gz


| Country | 

| CountryLanguage | 

+- + 

3 rows in set (0.01 sec) 

The following MySQL command will let you see the table details. 
 

Step 2: Add Sqoop User Permissions for the Local Machine and Cluster 

In MySQL, add the following privileges for user sqoop to MySQL. Note that you must use both 

the local host name and the cluster subnet for Sqoop to work properly. Also, for the purposes of 

this example, the sqoop password is sqoop. 

mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'limulus' IDENTIFIED BY 'sqoop'; mysql> 

GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'10.0.0.%' IDENTIFIED BY 'sqoop'; mysql> quit 
 

Next, log in as sqoop to test the permissions: 

 
$ mysql -u sqoop -p 

mysql> USE world; 

mysql> SHOW TABLES; 

+- + 

| Tables_in_world | 

+- + 

| City | 

| Country | 

| CountryLanguage | 

+- + 

3 rows in set (0.01 sec) 

mysql> quit 

Step 3: Import Data Using Sqoop 

As a test, we can use Sqoop to list databases in MySQL. The results appear after the warnings at 

the end of the output. Note the use of local host name (limulus) in the JDBC statement. 

$ sqoop list-databases --connect jdbc:mysql://limulus/world --username sqoop --password sqoop 

Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail. Please 

set $ACCUMULO_HOME to the root of your Accumulo installation. 

14/08/18 14:38:55 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4.2.1.2.1-471 

14/08/18 14:38:55 WARN tool.BaseSqoopTool: Setting your password on the 

command-line is insecure. Consider using -P instead. 

14/08/18 14:38:55 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 

information_schema 

 

test world 

 

In a similar fashion, you can use Sqoop to connect to MySQL and list the tables in the world 

database: 

sqoop list-tables --connect jdbc:mysql://limulus/world --username sqoop --password sqoop 

... 

14/08/18 14:39:43 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4.2.1.2.1-471 

14/08/18 14:39:43 WARN tool.BaseSqoopTool: Setting your password on the 

command-line is insecure. Consider using -P instead. 



14/08/18 14:39:43 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 

City Country 

CountryLanguage 
 

To import data, we need to make a directory in HDFS: 

$ hdfs dfs -mkdir sqoop-mysql-import 
 

The following command imports the Country table into HDFS. The option -table signifies the table 

to import, --target-dir is the directory created previously, and -m 1 tells Sqoop to use one map 

task to import the data. 

$ sqoop import --connect jdbc:mysql://limulus/world --username sqoop --password sqoop --table Country 

-m 1 --target-dir /user/hdfs/sqoop-mysql-import/country 

... 

14/08/18 16:47:15 INFO mapreduce.ImportJobBase: Transferred 30.752 KB in 12.7348 

seconds 

(2.4148 KB/sec) 

14/08/18 16:47:15 INFO mapreduce.ImportJobBase: Retrieved 239 records. 

The import can be confirmed by examining HDFS: 

$ hdfs dfs -ls sqoop-mysql-import/country 

Found 2 items 

-rw-r--r--  2 hdfs hdfs 0 2014-08-18 16:47 sqoop-mysql-import/ 

world/_SUCCESS 

-rw-r--r--  2 hdfs hdfs 31490 2014-08-18 16:47 sqoop-mysql-import/world/ part-

m-00000 
 

The file can be viewed using the hdfs dfs -cat command: 

 
$ hdfs dfs -cat sqoop-mysql-import/country/part-m-00000 

ABW,Aruba,North America,Caribbean,193.0,null,103000,78.4,828.0,793.0,Aruba, 

Nonmetropolitan 

Territory of The Netherlands,Beatrix,129,AW 

... 

ZWE,Zimbabwe,Africa,Eastern Africa,390757.0,1980,11669000,37.8,5951.0,8670.0, 

Zimbabwe, 

Republic,Robert G. Mugabe,4068,ZW 

 
To make the Sqoop command more convenient, you can create an options file and use it on the 

command line. Such a file enables you to avoid having to rewrite the same options. For 

 

example, a file called world-options.txt with the following contents will include the 

import command, --connect, --username, and --password options: 

 
import 

--connect jdbc:mysql://limulus/world 

--username 

sqoop 

--password sqoop 
 

The same import command can be performed with the following shorter line: 



$ sqoop --options-file world-options.txt --table City -m 1 --target-dir /user/hdfs/sqoop-mysql-import/city 

 

It is also possible to include an SQL Query in the import step. For example, suppose we want just 

cities in Canada: 

SELECT ID,Name from City WHERE CountryCode='CAN' 

In such a case, we can include the --query option in the Sqoop import request. The -- query 

option also needs a variable called $CONDITIONS, which will be explained next. In the 

following query example, a single mapper task is designated with the -m 1 option: 

sqoop --options-file world-options.txt -m 1 --target-dir /user/hdfs/sqoop-mysql-import/canada-city -- query 

"SELECT ID,Name from City WHERE CountryCode='CAN' AND \$CONDITIONS" 

Inspecting the results confirms that only cities from Canada have been imported: 

$ hdfs dfs -cat sqoop-mysql-import/canada-city/part-m-00000 

1810,MontrÄal 1811,Calgary 

1812,Toronto 

... 

1856,Sudbury 

1857,Kelowna 

1858,Barrie 

Since there was only one mapper process, only one copy of the query needed to be run on the 

database. The results are also reported in a single file (part-m-0000). 

Multiple mappers can be used to process the query if the --split-by option is used. The split- by 

option is used to parallelize the SQL query. Each parallel task runs a subset of the main query, with 

the results of each sub-query being partitioned by bounding conditions inferred by Sqoop. Your 

query must include the token $CONDITIONS that each Sqoop process will replace   with   a   

unique   condition   expression    based    on    the --split-by option.    Note that $CONDITIONS is 

not an environment variable. Although Sqoop will try to create 

 

balanced sub-queries based on the range of your primary key, it may be necessary to split on 

another column if your primary key is not uniformly distributed. 

The following example illustrates the use of the --split-by option. First, remove the results of the 

previous query: 

$ hdfs dfs -rm -r -skipTrash sqoop-mysql-import/canada-city 
 

Next, run the query using four mappers (-m 4), where we split by the ID number (--split-by 

ID): 

sqoop --options-file world-options.txt -m 4 --target-dir /user/hdfs/sqoop-mysql-import/canada-city -- query 

"SELECT ID,Name from City WHERE CountryCode='CAN' AND \$CONDITIONS" --split-by ID 
 



If we look at the number of results files, we find four files corresponding to the four mappers we 

requested in the command: 

$ hdfs dfs -ls sqoop-mysql-import/canada-city 

Found 5 items 

-rw-r--r--  2 hdfs hdfs 0 2014-08-18 21:31 sqoop-mysql-import/ 

canada-city/_SUCCESS 

-rw-r--r--  2 hdfs hdfs 175 2014-08-18 21:31 sqoop-mysql-import/canada-city/ part-

m-00000 

-rw-r--r--  2 hdfs hdfs 153 2014-08-18 21:31 sqoop-mysql-import/canada-city/ part-

m-00001 

-rw-r--r--  2 hdfs hdfs 186 2014-08-18 21:31 sqoop-mysql-import/canada-city/ part-

m-00002 

-rw-r--r--  2 hdfs hdfs 182 2014-08-18 21:31 sqoop-mysql-import/canada-city/ part-

m-00003 

 
Step 4: Export Data from HDFS to MySQL 

Sqoop can also be used to export data from HDFS. The first step is to create tables for exported 

data. There are actually two tables needed for each exported table. The first table holds the 

exported data (CityExport), and the second is used for staging the exported data 

(CityExportStaging). Enter the following MySQL commands to create these tables: 

 
mysql> CREATE TABLE 'CityExport' ( 

'ID' int(11) NOT NULL AUTO_INCREMENT, 

'Name' char(35) NOT NULL DEFAULT '', 

'CountryCode' char(3) NOT NULL DEFAULT '', 

'District' char(20) NOT NULL DEFAULT '', 

'Population' int(11) NOT NULL DEFAULT '0', 

PRIMARY KEY ('ID')); 

mysql> CREATE TABLE 'CityExportStaging' ( 

'ID' int(11) NOT NULL AUTO_INCREMENT, 

'Name' char(35) NOT NULL DEFAULT '', 

'CountryCode' char(3) NOT NULL DEFAULT '', 

'District' char(20) NOT NULL DEFAULT '', 

'Population' int(11) NOT NULL DEFAULT '0', 

PRIMARY KEY ('ID')); 

 

Next, create a cities-export-options.txt file similar to the world-options.txt created previously, but 

use the export command instead of the import command. 

The following command will export the cities data we previously imported back into MySQL: 

 
sqoop --options-file cities-export-options.txt --table CityExport --staging-table CityExportStaging -- clear-

staging-table -m 4 --export-dir /user/hdfs/sqoop-mysql-import/city 
 

Finally, to make sure everything worked correctly, check the table in MySQL to see if the cities 

are in the table: 

$ mysql> select * from CityExport limit 10; 

+-   + +- + +- + 

| ID | Name | CountryCode | District | Population | 



+-   + +- + +- + 

| 1 | Kabul | AFG | Kabol |  1780000 | 

| 2 | Qandahar | AFG | Qandahar | 237500 | 

| 3 | Herat | AFG | Herat | 186800 | 

| 4 | Mazar-e-Sharif | AFG | Balkh | 127800 | 

| 5 | Amsterdam | NLD | Noord-Holland | 731200 | 

| 6 | Rotterdam | NLD | Zuid-Holland | 593321 | 

| 7 | Haag | NLD | Zuid-Holland  | 440900 | 

| 8 | Utrecht | NLD | Utrecht | 234323 | 

| 9 | Eindhoven | NLD | Noord-Brabant | 201843 | 

| 10 | Tilburg | NLD | Noord-Brabant | 193238 | 

+-   + +- + +- + 10 

rows in set (0.00 sec) 

 
Some Handy Cleanup Commands 

If you are not especially familiar with MySQL, the following commands may be helpful to 

clean up the examples. To remove the table in MySQL, enter the following command: 

mysql> drop table 'CityExportStaging'; 
 

To remove the data in a table, enter this command: 

mysql> delete from CityExportStaging; 
 

To clean up imported files, enter this command: 

$ hdfs dfs -rm -r -skipTrash sqoop-mysql-import/{country,city, canada-city} 

 

USING APACHE FLUME TO ACQUIRE DATA STREAMS 

Apache Flume is an independent agent designed to collect, transport, and store data into HDFS. 

Often data transport involves a number of Flume agents that may traverse a series of machines and 

locations. Flume is often used for log files, social media-generated data, email messages, and just 

about any continuous data source. As shown in Figure 7.3, a Flume agent is composed of three 

components. 

 

 

 
Figure 7.3 Flume agent with source, channel, and sink (Adapted from Apache Flume Documentation) 

 

Source. The source component receives data and sends it to a channel. It can send the data to 

more than one channel. The input data can be from a real-time source (e.g., weblog) or another 

Flume agent. 



Channel. A channel is a data queue that forwards the source data to the sink destination. It can 

be thought of as a buffer that manages input (source) and output (sink) flow rates. 

Sink. The sink delivers data to destination such as HDFS, a local file, or another Flume agent. 

A Flume agent must have all three of these components defined. A Flume agent can have several 

sources, channels, and sinks. Sources can write to multiple channels, but a sink can take data from 

only a single channel. Data written to a channel remain in the channel until a sink removes the 

data. By default, the data in a channel are kept in memory but may be optionally stored on disk to 

prevent data loss in the event of a network failure. 

As shown in Figure 7.4, Sqoop agents may be placed in a pipeline, possibly to traverse several 

machines or domains. This configuration is normally used when data are collected on one machine 

(e.g., a web server) and sent to another machine that has access to HDFS. 

 

 

 

 

 

 

 

 

 
Figure 7.4 Pipeline created by connecting Flume agents (Adapted from Apache Flume Sqoop Documentation) 

 
In a Flume pipeline, the sink from one agent is connected to the source of another. The data transfer 

format normally used by Flume, which is called Apache Avro, provides several useful features. 

First, Avro is a data serialization/deserialization system that uses a compact 

 

binary format. The schema is sent as part of the data exchange and is defined using JSON 

(JavaScript Object Notation). Avro also uses remote procedure calls (RPCs) to send data. That 

is, an Avro sink will contact an Avro source to send data. 

Another useful Flume configuration is shown in Figure 7.5. In this configuration, Flume is used 

to consolidate several data sources before committing them to HDFS. 

Flume pipelines. 

Flume Example Walk-Through 

Follow these steps to walk through a Flume example. Step 

1: Download and Install Apache Flume Step 2: 

Simple Test 



 

A simple test of Flume can be done on a single machine. To start the Flume agent, enter the 

flume-ng command shown here. This command uses the simple-example.conf file to configure the 

agent. 

$ flume-ng agent --conf conf --conf-file simple-example.conf --name simple_agent - 

Dflume.root.logger=INFO,console 

 

In another terminal window, use telnet to contact the agent: 

 
$ telnet localhost 44444 

Trying ::1... 

telnet: connect to address ::1: Connection refused Trying 

127.0.0.1... 

Connected to localhost. 

Escape character is '^]'. 

testing 1 2 3 

OK 

If Flume is working correctly, the window where the Flume agent was started will show the testing 

message entered in the telnet window: 

Step 3: Weblog Example 

In this example, a record from the weblogs from the local machine (Ambari output) will be placed 

into HDFS using Flume. This example is easily modified to use other weblogs from different 

machines. Two files are needed to configure Flume. (See the sidebar and Appendix A for file 

downloading instructions.) 

web-server-target-agent.conf—the target Flume agent that writes the data to HDFS 

web-server-source-agent.conf—the source Flume agent that captures the weblog data 

The weblog is also mirrored on the local file system by the agent that writes to HDFS. To run the 

example, create the directory as root: 

# mkdir /var/log/flume-hdfs 

# chown hdfs:hadoop /var/log/flume-hdfs/ 
 

Next, as user hdfs, make a Flume data directory in HDFS: 

$ hdfs dfs -mkdir /user/hdfs/flume-channel/ 
 

Now that you have created the data directories, you can start the Flume target agent (execute as 

user hdfs): 

$ flume-ng agent -c conf -f web-server-target-agent.conf -n collector 

 

This agent writes the data into HDFS and should be started before the source agent. (The source 

reads the weblogs.) This configuration enables automatic use of the Flume agent. The 

/etc/flume/conf/{flume.conf, flume-env.sh.template} files need to be configured for this purpose. 



For this example, the /etc/flume/conf/flume.conf file can be the same as the web- server-target.conf 

file (modified for your environment). 

 

In this example, the source agent is started as root, which will start to feed the weblog data to the 

target agent. Alternatively, the source agent can be on another machine if desired. 

# flume-ng agent -c conf -f web-server-source-agent.conf -n source_agent 

 
To see if Flume is working correctly, check the local log by using the tail command. Also 

confirm that the flume-ng agents are not reporting any errors (the file name will vary). 

$ tail -f /var/log/flume-hdfs/1430164482581-1 
 

The contents of the local log under flume-hdfs should be identical to that written into HDFS. You 

can inspect this file by using the hdfs -tail command (the file name will vary). Note that while 

running Flume, the most recent file in HDFS may have the extension .tmp appended to it. The 

.tmpindicates that the file is still being written by Flume. The target agent can be configured to 

write the file   (and   start   another .tmp file)   by   setting   some   or   all   of the rollCount, 

rollSize, rollInterval, idleTimeout, and batchSize options in the configuration file. 

$ hdfs dfs -tail flume-channel/apache_access_combined/150427/FlumeData.1430164801381 
 

Both files should contain the same data. For instance, the preceding example had the following 

data in both files: 

10.0.0.1 - - [27/Apr/2015:16:04:21 -0400] "GET /ambarinagios/nagios/ 

nagios_alerts.php?q1=alerts&alert_type=all HTTP/1.1" 200 30801 "-" "Java/1.7.0_65" 

10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 784 "-" 

"Java/1.7.0_65" 

10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 508 "-" 

"Java/1.7.0_65" 
 

MANAGE HADOOP WORKFLOWS  WITH APACHE OOZIE 

Oozie is a workflow director system designed to run and manage multiple related Apache Hadoop 

jobs. For instance, complete data input and analysis may require several discrete Hadoop jobs to be 

run as a workflow in which the output of one job serves as the input for a successive job. Oozie is 

designed to construct and manage these workflows. Oozie is not a substitute for the YARN 

scheduler. That is, YARN manages resources for individual Hadoop jobs, and Oozie provides a 

way to connect and control Hadoop jobs on the cluster. 

Oozie workflow jobs are represented as directed acyclic graphs (DAGs) of actions. (DAGs are 

basically graphs that cannot have directed loops.) Three types of Oozie jobs are permitted: 

 



Workflow—a specified sequence of Hadoop jobs with outcome-based decision points and 

control dependency. Progress from one action to another cannot happen until the first action is 

complete. 

Coordinator—a scheduled workflow job that can run at various time intervals or when data 

become available. 

Bundle—a higher-level Oozie abstraction that will batch a set of coordinator jobs. 

Oozie is integrated with the rest of the Hadoop stack, supporting several types of Hadoop 

jobs out of the box (e.g., Java MapReduce, Streaming MapReduce, Pig, Hive, and Sqoop) as well 

as system-specific jobs (e.g., Java programs and shell scripts). Oozie also provides a CLI and a web 

UI for monitoring jobs. 

Figure 7.6 depicts a simple Oozie workflow. In this case, Oozie runs a basic MapReduce operation. 

If the application was successful, the job ends; if an error occurred, the job is killed. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.6 A simple Oozie DAG workflow (Adapted from Apache Oozie Documentation) 

 

Oozie workflow definitions are written in hPDL (an XML Process Definition Language). Such 

workflows contain several types of nodes: 

Control flow nodes define the beginning and the end of a workflow. They include start, end, 

and optional fail nodes. 

Action nodes are where the actual processing tasks are defined. When an action node finishes, 

the remote systems notify Oozie and the next node in the workflow is executed. Action nodes can 

also include HDFS commands. 

 

Fork/join nodes enable parallel execution of tasks in the workflow. The fork node enables two 

or more tasks to run at the same time. A join node represents a rendezvous point that must 

wait until all forked tasks complete. 



Control flow nodes enable decisions to be made about the previous task. Control decisions are 

based on the results of the previous action (e.g., file size or file existence). Decision nodes are 

essentially switch-case statements that use JSP EL (Java Server Pages—Expression 

 

They are also available as part of the oozie-client.noarch RPM in the Hortonworks HDP 2.x 

packages. For HDP 2.1, the following command  can be used to extract the files into the working 

directory used for the demo: 

$ tar xvzf /usr/share/doc/oozie-4.0.0.2.1.2.1/oozie-examples.tar.gz 

 
For HDP 2.2, the following command will extract the files: 

$ tar xvzf /usr/hdp/2.2.4.2-2/oozie/doc/oozie-examples.tar.gz 

 

Once extracted, rename the examples directory to oozie-examples so that you will not confuse it 

with the other examples directories. 

$ mv examples oozie-examples 

The examples must also be placed in HDFS. Enter the following command to move the 

example files into HDFS: 

$ hdfs dfs -put oozie-examples/ oozie-examples 

The Oozie shared library must be installed in HDFS. If you are using the Ambari installation of 

HDP 2.x, this library is already found in HDFS: /user/oozie/share/lib. 

Step 2: Run the Simple MapReduce Example 

Move to the simple MapReduce example directory: 

 
$ cd oozie-examples/apps/map-reduce/ 

 

This directory contains two files and a lib directory. The files are: 

The job.properties file defines parameters (e.g., path names, ports) for a job. This file may change 

per job. 

The workflow.xml file provides the actual workflow for the job. In this case, it is a simple 

MapReduce (pass/fail). This file usually stays the same between jobs. 

The job.properties file included in the examples requires a few edits to work properly. Using a 

text editor, change the following lines by adding the host name of the NameNode and 

ResourceManager (indicated by jobTracker in the file). 

As shown in Figure 7.6, this simple workflow runs an example MapReduce job and prints an error 

message if it fails. 

To   run   the   Oozie   MapReduce   example   job   from    the oozie-examples/apps/map- reduce 

directory, enter the following line: 



$ oozie job -run -oozie http://limulus:11000/oozie -config job.properties 

When Oozie accepts the job, a job ID will be printed: 

job: 0000001-150424174853048-oozie-oozi-W 

You will need to change the “limulus” host name to match the name of the node running your 

Oozie server. The job ID can be used to track and control job progress. 

To avoid having to provide the -oozie option with the Oozie URL every time you run the 

ooziecommand, set the OOZIE_URL environment variable as follows (using your Oozie server 

host name in place of “limulus”): 

$ export OOZIE_URL="http://limulus:11000/oozie" 

 

You can now run all subsequent Oozie commands without specifying the -oozie URL option. For 

instance, using the job ID, you can learn about a particular job’s progress by issuing the following 

command: 

$ oozie job -info 0000001-150424174853048-oozie-oozi-W 

The resulting output (line length compressed) is shown in the following listing. Because this job 

is just a simple test, it may be complete by the time you issue the -info command. If it is not 

complete, its progress will be indicated in the listing. 

Job ID : 0000001-150424174853048-oozie-oozi-W 
 

Workflow Name : map-reduce-wf 

App Path  : hdfs://limulus:8020/user/hdfs/examples/apps/map-reduce 

Status : SUCCEEDED 

Run 0 

User : hdfs 

Group : - 

Created : 2015-04-29 20:52 GMT 

Started : 2015-04-29 20:52 GMT 

Last Modified : 2015-04-29 20:53 GMT 

Ended : 2015-04-29 20:53 GMT 

CoordAction ID: - 

 
Actions 

   - ID

 Status Ext ID Ext Status Err Code 

  - 

0000001-150424174853048-oozie 

-oozi-W@:start: OK - OK - 

  - 

0000001-150424174853048-oozie 

-oozi-W@mr-node OK job_1429912013449_0006 SUCCEEDED - 

  - 

0000001-150424174853048-oozie 

-oozi-W@end OK - OK - 

  - 

The various steps shown in the output can be related directly to the workflow.xml mentioned 

previously. Note that the MapReduce job number is provided. This job will also be listed in the 

http://limulus:11000/oozie


ResourceManager web user interface. The application output is located in HDFS under the 

oozie-examples/output-data/map-reduce directory. 

Step 3: Run the Oozie Demo Application 

A more sophisticated example can be found in the demo directory (oozie- examples/apps/demo). 

This workflow includes MapReduce, Pig, and file system tasks as well as fork, join, decision, 

action, start, stop, kill, and end nodes. 

Move to the demo directory and edit the job.properties file as described previously. Entering the 

following command runs the workflow (assuming the OOZIE_URL environment variable has been 

set): 

 

$ oozie job -run -config job.properties 

You can track the job using either the Oozie command-line interface or the Oozie web console. 

To start the web console from within Ambari, click on the Oozie service, and then click on the 

Quick Links pull-down menu and select Oozie Web UI. Alternatively, you can start the Oozie 

web UI by connecting to the Oozie server directly. For example, the following command will 

bring up the Oozie UI (use your Oozie server host name in place of 

 

results, similar to those printed by the Oozie command line, are shown in the Actions window 

at the bottom. 

 
 

 

 
 

 

the latest documentation at http://oozie.apache.org HYPERLINK "http://oozie.apache.org/"  for 

more information. (Note that the 

examples here assume OOZIE_URL is defined.) 
 

Run a workflow job (returns _OOZIE_JOB_ID_): 

$ oozie job -run -config JOB_PROPERITES 

 

Submit a workflow job (returns _OOZIE_JOB_ID_ but does not start): 

$ oozie job -submit -config JOB_PROPERTIES 

 

Start a submitted job: 

$ oozie job -start _OOZIE_JOB_ID_ 

 

Check a job’s status: 

$ oozie job -info _OOZIE_JOB_ID_ 

http://oozie.apache.org/


 

Suspend a workflow: 

$ oozie job -suspend _OOZIE_JOB_ID_ 

 

Resume a workflow: 

$ oozie job -resume _OOZIE_JOB_ID_ 

 

Rerun a workflow: 

$ oozie job -rerun _OOZIE_JOB_ID_ -config JOB_PROPERTIES 

 

Kill a job: 

$ oozie job -kill _OOZIE_JOB_ID_ 

 

View server logs: 

$ oozie job -logs _OOZIE_JOB_ID_ 

 

Full logs are available at /var/log/oozie on the Oozie server. 
 

USING APACHE HBASE 

Apache HBase is an open source, distributed, versioned, nonrelational database modeled after 

Google’s Bigtable. Like Bigtable, HBase leverages the distributed data storage provided by the 

underlying distributed file systems spread across commodity servers. Apache HBase provides 

Bigtable-like capabilities on top of Hadoop and HDFS. Some of the more important features 

include the following capabilities: 

Linear and modular scalability Strictly 

consistent reads and writes 

Automatic and configurable sharding of tables Automatic 

failover support between RegionServers 

Convenient base classes for backing Hadoop MapReduce jobs with Apache HBase tables 

Easy-to-use Java API for client access 

HBase Data Model Overview 
 

A table in HBase is similar to other databases, having rows and columns. Columns in HBase are 

grouped into column families, all with the same prefix. For example, consider a table of daily stock 

prices. There may be a column family called “price” that has four members— price:open, 

price:close, price:low, and price:high. A column does not need to be a family. For instance, the 



stock table may have a column named “volume” indicating how many shares were traded. All 

column family members are stored together in the physical file system. 

Specific HBase cell values are identified by a row key, column (column family and column), and 

version (timestamp). It is possible to have many versions of data within an HBase cell. A version is 

specified as a timestamp and is created each time data are written to a cell. Almost anything can 

serve as a row key, from strings to binary representations of longs to serialized data structures. 

Rows are lexicographically sorted with the lowest order appearing first in a table. The empty byte 

array denotes both the start and the end of a table’s namespace. All table accesses are via the 

table row key, which is considered its primary key. 

 
HBase Example Walk-Through 

HBase provides a shell for interactive use. To enter the shell, type the following as a user: 

$ hbase shell 

hbase(main):001:0> 

To exit the shell, type exit. 

Various commands can be conveniently entered from   the   shell   prompt.   For instance, the 

status command provides the system status: 

hbase(main):001:0> status 

4 servers, 0 dead, 1.0000 average load 

Additional arguments can be added to the status command, including 'simple', 'summary', or 

'detailed'. The single quotes are needed for proper operation. For example, the following command 

will provide simple status information for the four HBase servers (actual server statistics have been 

removed for clarity): 

hbase(main):002:0> status 'simple' 

4 live servers 

n1:60020 1429912048329 

... 

n2:60020 1429912040653 

... 

limulus:60020 1429912041396 

... 

n0:60020 1429912042885 

... 

0 dead servers 

Aggregate load: 0, regions: 4 

 

Other     basic     commands,      such      as version or whoami,      can      be      entered      directly      at the 

hbase(main)prompt. In the example that follows, we will use a small set of daily stock price data 

for Apple computer. The data have the following form: 



 

The data can be downloaded from Google using the following command. Note that other stock 

prices are available by changing the NASDAQ:AAPL argument to any other valid exchange and 

stock name (e.g., NYSE: IBM). 

 
$ wget -O Apple-stock.csv http://www.google.com/finance/historical?q=NASDAQ:AAPL\ HYPERLINK 

"http://www.google.com/finance/historical?q=NASDAQ%3AAAPL\&authuser=0\&output=csv"& HYPERLINK 

"http://www.google.com/finance/historical?q=NASDAQ%3AAAPL\&authuser=0\&output=csv"authuser=0\ 

HYPERLINK "http://www.google.com/finance/historical?q=NASDAQ%3AAAPL\&authuser=0\&output=csv"& 

HYPERLINK 

"http://www.google.com/finance/historical?q=NASDAQ%3AAAPL\&authuser=0\&output=csv"output=csv 
 

The Apple stock price database is in comma-separated format (csv) and will be used to illustrate 

some basic operations in the HBase shell. 

Create the Database 

The next step is to create the database in HBase using the following command: 

hbase(main):006:0> create 'apple', 'price' , 'volume' 

0 row(s) in 0.8150 seconds 

In this case, the table name is apple, and two columns are defined. The date will be used as the 

row   key.   The price column   is   a   family   of   four   values   (open, close, low, high). The put 

command is used to add data to the database from within the shell. For instance, the preceding data 

can be entered by using the following commands: 

put   'apple','6-May-15','price:open','126.56' 

put   'apple','6-May-15','price:high','126.75' 

put 'apple','6-May-15','price:low','123.36' 

put   'apple','6-May-15','price:close','125.01' 

put   'apple','6-May-15','volume','71820387' 
 

The shell also keeps a history for the session, and previous commands can be retrieved and 

edited for resubmission. 

Inspect the Database 

The entire database can be listed using the scan command. Be careful when using this command 

with large databases. This example is for one row. 

hbase(main):006:0> scan 'apple' 

ROW COLUMN+CELL 

6-May-15 column=price:close, timestamp=1430955128359, value=125.01 6-May-

15 column=price:high, timestamp=1430955126024, value=126.75 6-May-

15 column=price:low, timestamp=1430955126053, value=123.36 6-May-

15 column=price:open, timestamp=1430955125977, value=126.56 6-

May-15 column=volume:, timestamp=1430955141440, value=71820387 

 

Get a Row 

http://www.google.com/finance/historical?q=NASDAQ%3AAAPL/&authuser=0/&output=csv
http://www.google.com/finance/historical?q=NASDAQ%3AAAPL/&authuser=0/&output=csv
http://www.google.com/finance/historical?q=NASDAQ%3AAAPL/&authuser=0/&output=csv
http://www.google.com/finance/historical?q=NASDAQ%3AAAPL/&authuser=0/&output=csv
http://www.google.com/finance/historical?q=NASDAQ%3AAAPL/&authuser=0/&output=csv
http://www.google.com/finance/historical?q=NASDAQ%3AAAPL/&authuser=0/&output=csv


You can use the row key to access an individual row. In the stock price database, the date is the 

row key. 

hbase(main):008:0> get 'apple', '6-May-15' 

COLUMN CELL 

price:close timestamp=1430955128359,   value=125.01 

price:high timestamp=1430955126024,   value=126.75 

price:low timestamp=1430955126053, value=123.36 

price:open timestamp=1430955125977,   value=126.56 

volume: timestamp=1430955141440, value=71820387 5 

row(s) in 0.0130 seconds 

 
Get Table Cells 

A single cell can be accessed using the get command and the COLUMN option: 

 
hbase(main):013:0> get 'apple', '5-May-15', {COLUMN => 'price:low'} 

COLUMN CELL 

price:low timestamp=1431020767444, value=125.78 1 

row(s) in 0.0080 seconds 

In a similar fashion, multiple columns can be accessed as follows: 

hbase(main):012:0> get 'apple', '5-May-15', {COLUMN => ['price:low', 'price:high']} 

COLUMN CELL 

price:high timestamp=1431020767444, value=128.45 

price:low timestamp=1431020767444, value=125.78 2 

row(s) in 0.0070 seconds 

 
Delete a Cell 

A specific cell can be deleted using the following command: 

 
hbase(main):009:0> delete 'apple', '6-May-15' , 'price:low' 

 

If the row is inspected using get, the price:low cell is not listed. 

 
hbase(main):010:0> get 'apple', '6-May-15' 

COLUMN CELL 

price:close timestamp=1430955128359,   value=125.01 

price:high timestamp=1430955126024,   value=126.75 

price:open timestamp=1430955125977,   value=126.46 

volume: timestamp=1430955141440, value=71820387 4 

row(s) in 0.0130 seconds 

 
Delete a Row 

You can delete an entire row by giving the deleteall command as follows: 

 
hbase(main):009:0> deleteall 'apple', '6-May-15' 

 
Remove a Table 

 



To remove (drop) a table, you must first disable it. The following two commands remove the 

appletable from Hbase: 

 
hbase(main):009:0> disable 'apple' 

hbase(main):010:0> drop 'apple' 

 
Scripting Input 

Commands to the HBase shell can be placed in bash scripts for automated processing. For 

instance, the following can be placed in a bash script: 

 
echo "put 'apple','6-May-15','price:open','126.56'" | hbase shell 

 

The book software page includes a script (input_to_hbase.sh) that imports the Apple- stock.csv 

file into HBase using this method. It also removes the column titles in the first line. The script will 

load the entire file into HBase when you issue the following command: 

$ input_to_hbase.sh Apple-stock.csv 

While the script can be easily modified to accommodate other types of data, it is not recommended 

for production use because the upload is very inefficient and slow. Instead, this script is best used 

to experiment with small data files and different types of data. 

Adding Data in Bulk 

There are several ways to efficiently load bulk data into HBase. Covering all of these methods is 

beyond the scope of this chapter. Instead, we will focus on the ImportTsv utility, which loads data 

in tab-separated values (tsv) format into HBase. It has two distinct usage modes: 

Loading data from a tsv-format file in HDFS into HBase via the put command 

Preparing StoreFiles to be loaded via the completebulkload utility 

The following example shows how to use ImportTsv for the first option, loading the tsv- format 

file using the put command. 

The first step is to convert the Apple-stock.csv file to tsv format. The following script, which is 

included in the book software, will remove the first line and do the conversion. In doing so, it 

creates a file named Apple-stock.tsv. 

$ convert-to-tsv.sh Apple-stock.csv 

Next, the new file is copied to HDFS as follows: 

$ hdfs dfs -put Apple-stock.tsv /tmp 

 

Finally, ImportTsv is run using the following command line. Note the column designation in the -

Dimporttsv.columns option. In the example, the HBASE_ROW_KEY is set as the first column—

that is, the date for the data. 



$ hbase org.apache.hadoop.hbase.mapreduce.ImportTsv - 

Dimporttsv.columns=HBASE_ROW_KEY,price:open,price:high,price:low,price:close,volume apple 

/tmp/Apple-stock.tsv 

 

The ImportTsv command will use MapReduce to load the data into HBase. To verify that the 

command works, drop and re-create the apple database, as described previously, before running 

the import command. 

8. Hadoop YARN Applications 
In This Chapter: 

The YARN Distributed-Shell is introduced as a non-MapReduce application. The 

Hadoop YARN application and operation structure is explained. 

A summary of YARN application frameworks is provided. 

YARN DISTRIBUTED-SHELL 

The Hadoop YARN project includes the Distributed-Shell application, which is an example of a 

Hadoop non-MapReduce application built on top of YARN. Distributed-Shell is a simple 

mechanism for running shell commands and scripts in containers on multiple nodes in a Hadoop 

cluster. This application is not meant to be a production administration tool, but rather a 

demonstration of the non-MapReduce capability that can be implemented on top of YARN. There 

are multiple mature implementations of a distributed shell that administrators typically use to 

manage a cluster of machines. 

In addition, Distributed-Shell can be used as a starting point for exploring and building Hadoop 

YARN applications. This chapter offers guidance on how the Distributed-Shell can be used to 

understand the operation of YARN applications. 

USING THE YARN DISTRIBUTED-SHELL 

For the purpose of the examples presented in the remainder of this chapter, we assume and assign 

the following installation path, based on Hortonworks HDP 2.2, the Distributed-Shell application: 

$ export YARN_DS=/usr/hdp/current/hadoop-yarn-client/hadoop-yarn-applications- distributedshell.jar 

 

For the pseudo-distributed install using Apache Hadoop version 2.6.0, the following path will run 

the Distributed-Shell application (assuming $HADOOP_HOME is defined to reflect the location 

Hadoop): 

$ export YARN_DS=$HADOOP_HOME/share/hadoop/yarn/hadoop-yarn-applications- 

distributedshell-2.6.0.jar 

 



If another distribution is used, search for the file hadoop-yarn-applications- distributedshell*.jar 

and set $YARN_DS based on its location. Distributed-Shell exposes various options that can be 

found by running the following command: 

 
$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -help 

 

The output of this command follows; we will explore some of these options in the examples 

illustrated in this chapter. 

usage: Client 

-appname <arg> Application Name. Default value – DistributedShell 

-container_memory <arg> Amount of memory in MB to be requested to run the shell command 

-container_vcores <arg> Amount of virtual cores to be requested to run the shell command 

-create Flag to indicate whether to create the domain specified with -domain. 

-debug Dump out debug information 

-domain <arg> ID of the timeline domain where the timeline entities will be put 

-help Print usage 

-jar <arg> Jar file containing the application master 

-log_properties <arg> log4j.properties file 

-master_memory <arg> Amount of memory in MB to be requested to run the application master 

-master_vcores <arg> Amount of virtual cores to be requested to run the application master 

-modify_acls <arg> Users and groups that allowed to modify the timeline entities in the given domain 

-timeout <arg> Application timeout in milliseconds 

-view_acls <arg> Users and groups that allowed to view the timeline entities in the given domain 

 
A Simple Example 

The simplest use-case for the Distributed-Shell application is to run an arbitrary shell command 

in a container. We will demonstrate the use of the uptime command as an example. This command 

is run on the cluster using Distributed-Shell as follows: 

 
$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command 

uptime 

 

By default, Distributed-Shell spawns only one instance of a given shell command. When this 

command is run, you can see progress messages on the screen but nothing about the actual 

shell command. If the shell command succeeds, the following should appear at the end of the 

output: 

15/05/27 14:48:53 INFO distributedshell.Client: Application completed successfully 

 

If the shell command did not work for whatever reason, the following message will be displayed: 

15/05/27 14:58:42 ERROR distributedshell.Client: Application failed to complete 

successfully 

 

The next step is to examine the output for the application. Distributed-Shell redirects the output 

of the individual shell commands run on the cluster nodes into the log files, which are found either 



on the individual nodes or aggregated onto HDFS, depending on whether log aggregation is 

enabled. 

Assuming log aggregation is enabled, the results for each instance of the command can be found 

by using the yarn logs command. For the previous uptime example, the following command can be 

used to inspect the logs: 

$ yarn logs -applicationId application_1432831236474_0001 
 

The abbreviated output follows: 

 
Container: container_1432831236474_0001_01_000001 on n0_45454 

=============================================================== 

LogType:AppMaster.stderr 

Log Upload Time:Thu May 28 12:41:58 -0400 2015 

LogLength:3595 

Log Contents: 

15/05/28 12:41:52 INFO distributedshell.ApplicationMaster: Initializing 

ApplicationMaster 

[...] 

Container: container_1432831236474_0001_01_000002 on n1_45454 

=============================================================== 

LogType:stderr 

Log Upload Time:Thu May 28 12:41:59 -0400 2015 

LogLength:0 

Log Contents: 

 
LogType:stdout 

Log Upload Time:Thu May 28 12:41:59 -0400 2015 

LogLength:71 

Log Contents: 

12:41:56 up 33 days, 19:28, 0 users, load average: 0.08, 0.06, 0.01 
 

Notice that there are two containers. The first container (con..._000001) is the ApplicationMaster for the 

job. The second container (con..._000002) is the actual shell script. The output for the uptime 

command is located in the second containers stdout after the Log Contents: label. 

 
Using More Containers 

 

Distributed-Shell can run commands to be executed on any number of containers by way of the 

-num_containers argument. For example, to see on which nodes the Distributed-Shell command 

was run, the following command can be used: 

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command hostname -

num_containers 4 

If we now examine the results for this job, there will be five containers in the log. The four 

command containers (2 through 5) will print the name of the node on which the container was run. 

Distributed-Shell Examples with Shell Arguments 



Arguments can be added to the shell command using the -shell_args option. For example, to do a 

ls -l in the directory from where the shell command was run, we can use the following commands: 

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command ls - shell_args 

-l 
 

The resulting output from the log file is as follows: 

total 20 

-rw-r--r-- 1 yarn hadoop 74 May 28 10:37 container_tokens 

-rwx------ 1 yarn hadoop 643 May 28 10:37 default_container_executor_session.sh 

-rwx------ 1 yarn hadoop 697 May 28 10:37 default_container_executor.sh 

-rwx ------ 1 yarn hadoop 1700 May 28 10:37 launch_container.sh 

drwx--x --- 2 yarn hadoop 4096 May 28 10:37 tmp 
 

As can be seen, the resulting files are new and not located anywhere in HDFS or the local file 

system. When we explore further by giving a pwd command for Distributed-Shell, the following 

directory is listed and created on the node that ran the shell command: 

 
/hdfs2/hadoop/yarn/local/usercache/hdfs/appcache/application_1432831236474_0003/container_14328312 

36474_0003_01_000002/ 

 

Searching for this directory will prove to be problematic because these transient files are used by 

YARN to run the Distributed-Shell application and are removed once the application finishes. You 

can preserve these files for a specific interval by adding the following lines to the yarn-

site.xmlconfiguration file and restarting YARN: 

<property> 

<name>yarn.nodemanager.delete.debug-delay-sec</name> 

<value>100000</value> 

</property> 

 

Choose a delay, in seconds, to preserve these files, and remember that all applications will 

create these files. If you are using Ambari, look on the YARN Configs tab under the Advanced 

yarn-site options, make the change and restart YARN. (See Chapter 9, “Managing Hadoop with 

Apache Ambari,” for more information on Ambari administration.) These files will be retained on 

the individual nodes only for the duration of the specified delay. 

When    debugging     or     investigating     YARN     applications,     these     files—in particular, 

launch_container.sh—offer important information about YARN processes. Distributed-Shell can 

be used to see what this file contains. Using DistributedShell, the contents of the 

launch_container.sh file can be printed with the following command: 

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command cat 

-shell_args launch_container.sh 
 



This command prints the launch_container.sh file that is created and run by YARN. The contents 

of this file are shown in Listing 8.1. The file basically exports some important YARN variables 

and then, at the end, “execs” the command (cat launch_container.sh) directly and sends any 

output to logs. 

 

Listing 8.1 Distributed-Shell launch_container.sh File 
 

#!/bin/bash 

 

export NM_HTTP_PORT="8042" 

export LOCAL_DIRS="/opt/hadoop/yarn/local/usercache/hdfs/appcache/ 

application_1432816241597_0004,/hdfs1/hadoop/yarn/local/usercache/hdfs/appc ache/ 

application_1432816241597_0004,/hdfs2/hadoop/yarn/local/usercache/hdfs/appc ache/ 

application_1432816241597_0004" 

export JAVA_HOME="/usr/lib/jvm/java-1.7.0-openjdk.x86_64" export 

NM_AUX_SERVICE_mapreduce_shuffle="AAA0+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAA= 

" 

export HADOOP_YARN_HOME="/usr/hdp/current/hadoop-yarn-client" 

export HADOOP_TOKEN_FILE_LOCATION="/hdfs2/hadoop/yarn/local/usercache/hdfs/ 

appcache/application_1432816241597_0004/container_1432816241597_0004_01_000 002/ 

container_tokens" 

export NM_HOST="limulus" 

export JVM_PID="$$" export 

USER="hdfs" 

export PWD="/hdfs2/hadoop/yarn/local/usercache/hdfs/appcache/ 

application_1432816241597_0004/container_1432816241597_0004_01_000002" 

export CONTAINER_ID="container_1432816241597_0004_01_000002" 

export NM_PORT="45454" 

export HOME="/home/" 

export LOGNAME="hdfs" 

export HADOOP_CONF_DIR="/etc/hadoop/conf" 

 

export MALLOC_ARENA_MAX="4" 

export LOG_DIRS="/opt/hadoop/yarn/log/application_1432816241597_0004/ 

container_1432816241597_0004_01_000002,/hdfs1/hadoop/yarn/log/ 

application_1432816241597_0004/container_1432816241597_0004_01_000002,/hdfs 2/ 

hadoop/yarn/log/application_1432816241597_0004/ 

container_1432816241597_0004_01_000002" 

exec /bin/bash -c "cat launch_container.sh 

1>/hdfs2/hadoop/yarn/log/application_1432816241597_0004/ 

container_1432816241597_0004_01_000002/stdout 2>/hdfs2/hadoop/yarn/log/ 

application_1432816241597_0004/container_1432816241597_0004_01_000002/stder r 

" 

hadoop_shell_errorcode=$? 

if [ $hadoop_shell_errorcode -ne 0 ] then 

exit $hadoop_shell_errorcode 

fi 

 

There are more options for the Distributed-Shell that you can test. The real value of the 

Distributed-Shell application is its ability to demonstrate how applications are launched within 

the Hadoop YARN infrastructure. It is also a good starting point when you are creating YARN 

applications. 



 

STRUCTURE OF YARN APPLICATIONS 

The structure and operation of a YARN application are covered briefly in this section. 

The central YARN ResourceManager runs as a scheduling daemon on a dedicated machine and 

acts as the central authority for allocating resources to the various competing applications in the 

cluster. The ResourceManager has a central and global view of all cluster resources and, 

therefore, can ensure fairness, capacity, and locality are shared across all users. Depending on the 

application demand, scheduling priorities, and resource availability, the ResourceManager 

dynamically allocates resource containers to applications to run on particular nodes. A container 

is a logical bundle of resources (e.g., memory, cores) bound to a particular cluster node. To enforce 

and track such assignments, the ResourceManager interacts with a special system daemon 

running on each node called the NodeManager. Communications between the ResourceManager 

and NodeManagers are heartbeat based for scalability. NodeManagers are responsible for local 

monitoring of resource availability, fault reporting, and container life-cycle management (e.g., 

starting and killing jobs). The ResourceManager depends on the NodeManagers for its “global 

view” of the cluster. 

User applications are submitted to the ResourceManager via a public protocol and go through an 

admission control phase during which security credentials are validated and various operational 

and administrative  checks are performed. Those applications that are accepted 

 

pass to the scheduler and are allowed to run. Once the scheduler has enough resources to satisfy 

the request, the application is moved from an accepted state to a running state. Aside from internal 

bookkeeping, this process involves allocating a container for the single ApplicationMaster and 

spawning it on a node in the cluster. Often called container 0, the ApplicationMaster does not have 

any additional resources at this point, but rather must request additional resources from the 

ResourceManager. 

The ApplicationMaster is the “master” user job that manages all application life-cycle aspects, 

including dynamically increasing and decreasing resource consumption (i.e., containers), managing 

the flow of execution (e.g., in case of MapReduce jobs, running reducers against the output of 

maps), handling faults and computation skew, and performing other local optimizations. The 

ApplicationMaster is designed to run arbitrary user code that can be written in any programming 

language, as all communication with the ResourceManager and NodeManager is encoded using 

extensible network protocols 



YARN makes few assumptions about the ApplicationMaster, although in practice it expects most 

jobs will use a higher-level programming framework. By delegating all these functions to 

ApplicationMasters, YARN’s architecture gains a great deal of scalability, programming model 

flexibility, and improved user agility. For example, upgrading and testing a new MapReduce 

framework can be done independently of other running MapReduce frameworks. 

Typically, an ApplicationMaster will need to harness the processing power of multiple servers 

to complete a job. To achieve this, the ApplicationMaster issues resource requests to the 

ResourceManager. The form of these requests includes specification of locality preferences (e.g., 

to accommodate HDFS use) and properties of the containers. The ResourceManager will attempt to 

satisfy the resource requests coming from each application according to availability and 

scheduling policies. When a resource is scheduled on behalf of an ApplicationMaster, the 

ResourceManager generates a lease for the resource, which is acquired by a subsequent 

ApplicationMaster heartbeat. The ApplicationMaster then works with the NodeManagers to 

start the resource. A token-based security mechanism guarantees its authenticity when the 

ApplicationMaster presents the container lease to the NodeManager. In a typical situation, running 

containers will communicate with the ApplicationMaster through an application-specific protocol 

to report status and health information and to receive framework-specific commands. In this way, 

YARN provides a basic infrastructure for monitoring and life-cycle management of 

containers, while each framework manages 

 

application-specific semantics independently. This design stands in sharp contrast to the original 

Hadoop version 1 design, in which scheduling was designed and integrated around managing only 

MapReduce tasks. 

YARN presents   a   resource   management   platform,   which   provides   services   such   as 

scheduling, fault monitoring, data locality, and more to MapReduce and other frameworks. 

Figure 8.2 illustrates some of the various frameworks that will run under YARN. Note that the 

Hadoop version 1 applications (e.g., Pig and Hive) run under the MapReduce framework. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.2 Example of the Hadoop version 2 ecosystem. Hadoop version 1 supports batch MapReduce applications only. 
 

This section presents a brief survey of emerging open source YARN application frameworks that 

are being developed to run under YARN. As of this writing, many YARN frameworks are under 

active development and the framework landscape is expected to change rapidly. Commercial 

vendors are also taking advantage of the YARN platform. Consult the webpage for each 

individual framework for full details of its current stage of development and deployment. 

 
Distributed-Shell 

As described earlier in this chapter, Distributed-Shell is an example application included with the 

Hadoop core components that demonstrates how to write applications on top of YARN. It provides 

a simple method for running shell commands and scripts in containers in parallel on a Hadoop 

YARN cluster. 

 
Hadoop MapReduce 

MapReduce was the first YARN framework and drove many of YARN’s requirements. It is 

integrated tightly with the rest of the Hadoop ecosystem projects, such as Apache Pig, Apache 

Hive, and Apache Oozie. 

 
Apache Tez 

One great example of a new YARN framework is Apache Tez. Many Hadoop jobs involve the 

execution of a complex directed acyclic graph (DAG) of tasks using separate MapReduce 

 

stages. Apache Tez generalizes this process and enables these tasks to be spread across stages so 

that they can be run as a single, all-encompassing job. 

Tez can be used as a MapReduce replacement for projects such as Apache Hive and Apache Pig. 

No changes are needed to the Hive or Pig applications. 



 
Apache Giraph 

Apache Giraph is an iterative graph processing system built for high scalability. Facebook, Twitter, 

and LinkedIn use it to create social graphs of users. Giraph was originally written to run on 

standard Hadoop V1 using the MapReduce framework, but that approach proved inefficient and 

totally unnatural for various reasons. The native Giraph implementation under YARN provides the 

user with an iterative processing model that is not directly available with MapReduce. Support for 

YARN has been present in Giraph since its own version 1.0 release. In addition, using the 

flexibility of YARN, the Giraph developers plan on implementing their own web interface to 

monitor job progress 

 
Hoya: HBase on YARN 

The Hoya project creates dynamic and elastic Apache HBase clusters on top of YARN. A client 

application creates the persistent configuration files, sets up the HBase cluster XML files, and 

then asks YARN to create an ApplicationMaster. YARN copies all files listed in the client’s 

application-launch request from HDFS into the local file system of the chosen server, and then 

executes the command to start the Hoya ApplicationMaster. Hoya also asks YARN for the number 

of containers matching the number of HBase region servers it needs. 

 
Dryad on YARN 

Similar to Apache Tez, Microsoft’s Dryad provides a DAG as the abstraction of execution flow. 

This framework is ported to run natively on YARN and is fully compatible with its non-YARN 

version. The code is written completely in native C++ and C# for worker nodes and uses a thin 

layer of Java within the application. 

 
Apache Spark 

Spark was initially developed for applications in which keeping data in memory improves 

performance, such as iterative algorithms, which are common in machine learning, and interactive 

data mining. Spark differs from classic MapReduce in two important ways. First, Spark holds 

intermediate results in memory, rather than writing them to disk. Second, Spark 

 

supports more than just MapReduce functions; that is, it greatly expands the set of possible 

analyses that can be executed over HDFS data stores. It also provides APIs in Scala, Java, and 

Python. 



Since 2013, Spark has been running on production YARN clusters at Yahoo!. The advantage of 

porting and running Spark on top of YARN is the common resource management and a single 

underlying file system. 

Apache Storm 

Traditional MapReduce jobs are expected to eventually finish, but Apache Storm continuously 

processes messages until it is stopped. This framework is designed to process unbounded streams 

of data in real time. It can be used in any programming language. The basic Storm use-cases 

include real-time analytics, online machine learning, continuous computation, distributed RPC 

(remote procedure calls), ETL (extract, transform, and load), and more. Storm provides fast 

performance, is scalable, is fault tolerant, and provides processing guarantees. It works directly 

under YARN and takes advantage of the common data and resource management substrate. 

Apache REEF: Retainable Evaluator Execution Framework 

YARN’s flexibility sometimes requires significant effort on the part of application implementers. 

The steps involved in writing a custom application on YARN include building your own 

ApplicationMaster, performing client and container management, and handling aspects of fault 

tolerance, execution flow, coordination, and other concerns. The REEF project by Microsoft 

recognizes this challenge and factors out several components that are common to many 

applications, such as storage management, data caching, fault detection, and checkpoints. 

Framework designers can build their applications on top of REEF more easily than they can build 

those same applications directly on YARN, and can reuse these common services/libraries. 

REEF’s design makes it suitable for both MapReduce and DAG- like executions as well as 

iterative and interactive computations. 

Hamster: Hadoop and MPI on the Same Cluster 

The Message Passing Interface (MPI) is widely used in high-performance computing (HPC). MPI 

is primarily a set of optimized message-passing library calls for C, C++, and Fortran that operate 

over popular server interconnects such as Ethernet and InfiniBand. Because users have full 

control over their YARN containers, there is no reason why MPI applications cannot run within 

a Hadoop cluster. The Hamster effort is a work-in-progress that provides a good discussion of the 

issues involved in mapping MPI to a YARN cluster. 

 

Apache Flink: Scalable Batch and Stream Data Processing 

Apache Flink is a platform for efficient, distributed, general-purpose data processing. It features 

powerful programming abstractions in Java and Scala, a high-performance run time, and automatic 



program optimization. It also offers native support for iterations, incremental iterations, and 

programs consisting of large DAGs of operations. 

Flink is primarily a stream-processing framework that can look like a batch-processing 

environment. The immediate benefit from this approach is the ability to use the same algorithms 

for both streaming and batch modes (exactly as is done in Apache Spark). However, Flink can 

provide low-latency similar to that found in Apache Storm, but which is not available in Apache 

Spark. 

In addition, Flink has its own memory management system, separate from Java’s garbage collector. 

By managing memory explicitly, Flink almost eliminates the memory spikes often seen on Spark 

clusters. 

Apache Slider: Dynamic Application Management 

Apache Slider (incubating) is a YARN application to deploy existing distributed applications on 

YARN, monitor them, and make them larger or smaller as desired in real time. 

Applications can be stopped and then started; the distribution of the deployed application across 

the YARN cluster is persistent and allows for best-effort placement close to the previous 

locations. Applications that remember the previous placement of data (such as HBase) can 

exhibit fast startup times by capitalizing on this feature. 

YARN monitors the health of “YARN containers” that are hosting parts of the deployed 

applications. If a container fails, the Slider manager is notified. Slider then requests a new 

replacement container from the YARN ResourceManager. Some of Slider’s other features include 

user creation of on-demand applications, the ability to stop and restart applications as needed 

(preemption), and the ability to expand or reduce the number of application containers as needed. 

The Slider tool is a Java command-line application. 
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Big Data uses distributed systems. A distributed system consists of multiple data nodes at 

clusters of machines and distributed software components. The tasks execute in parallel with 

data at nodes in clusters. The computing nodes communicate with the applications through a 

network. 

Following are the features of distributed-computing architecture (Chapter 
 

l. Increased reliability and fault tolerance: The important advantage of distributed 

computing system is reliability. If a segment of machines in a cluster fails then the rest of the 

machines continue work. When the datasets replicate at number of data nodes, the fault 

tolerance increases further. The dataset in remaining segments continue the same 

computations as being done at failed segment machines. 

• Flexibility makes it very easy to install, implement and debug new services in a 

distributed environment. 

• Sharding is storing the different parts of data onto different sets of data nodes, clusters or 

servers. For example, university students huge database, on sharding divides in databases, 

called shards. Each shard may correspond to a database for an individual course and year. 

Each shard stores at different nodes or servers. 

• Speed: Computing power increases in a distributed computing system as shards run 

parallelly on individual data nodes in clusters independently (no data sharing between 

shards). 

 

• Scalability: Consider sharding of a large database into a number of shards, distributed for 

computing in different systems. When the database expands further, then adding more 

machines 

and increasing the number of shards provides horizontal scalability. Increased computing 

power and running number of algorithms on the same machines provides vertical 

scalability.Resources sharing: Shared resources of memory, machines and network 

architecture reduce the cost. 

Open system makes the service accessible to all nodes. 
 



• Performance: The collection of processors in the system provides higher performance 

than a centralized computer, due to lesser cost of communication among machines (Cost 

means time taken up in communication). 

 

• NOSQL DATA STORE 
 

SQL is a programming language based on relational algebra. It is a declarative language and 

it defines the data schema . SQL creates databases and RDBMS s. RDBMS uses tabular data 

store with relational algebra, precisely defined operators with relations as the operands. 

Relations are a set of tuples. Tuples are named attributes. A tuple identifies uniquely by keys 

called candidate keys. 

ACID Properties in SQL Transactions 

Atomicity of transaction means all operations in the transaction must complete, and if 

interrupted, then must be undone (rolled back). For example, if a customer withdraws an 

amount then the bank in first operation enters the withdrawn amount in the table and in the next 

operation modifies the balance with new amount available. Atomicity means both should be 

completed, else undone if interrupted in between. 

Consistency in transactions means that a transaction must maintain the integrity constraint, 

and follow the consistency principle. For example, the difference of sum of deposited 

amounts and withdrawn amounts in a bank account must equal the last balance. All three data 

need to be consistent. 

Isolation of transactions means two transactions of the database must be isolated from each 

other and done separately. 

Durability means a transaction must persist once completed 
 

NOSQL 
 

A new category of data stores is NoSQL (means Not Only SQL) data stores. NoSQL is an 

altogether new approach of thinking about databases, such as schema flexibility, simple 

relationships, dynamic schemas, auto sharding, replication, integrated caching, horizontal 

scalability of shards, distributable tuples, semi-structures data and flexibility in approach. 



Issues with NoSQL data stores are lack of standardization in approaches, processing 

difficulties for complex queries, dependence on eventually consistent results in place of 

consistency in all states. 

Big Data NoSQL 
 

NoSQL records are in non-relational data store systems. They use flexible data models. The 

records use multiple schemas. NoSQL data stores are considered as semi-structured data. Big 

Data Store uses NoSQL. 

 

NoSQL data store characteristics are as follows: 
 

• NoSQL is a class of non-relational data storage system with flexible data model. 

Examples of NoSQL data-architecture patterns of datasets are key-value pairs, 

name/value pairs, Column family,Big-data store, Tabular data store, Cassandra (used 

in Facebook/Apache), HBase, hash table [Dynamo (Amazon S3)], unordered keys 

using 

]SON (CouchDB), ]SON (PNUTS), ]SON (MongoDB), Graph Store, Object Store, 

ordered keys and semi-structured data storage systems. 

• NoSQL not necessarily has a fixed schema, such as table; do not use the concept of 

Joins (in distributed data storage systems); Data written at one node can be replicated 

to multiple nodes. Data store is thus fault• tolerant. The store can be partitioned into 

unshared shards. 

Features in NoSQL Transactions NoSQL transactions have following features: 
 

• Relax one or more of the ACID properties. 
 

• Characterize by two out of three properties (consistency, availability and partitions) 

of CAP theorem, two are at least present for the application/ service/process. 

• Can be characterized by BASE properties 
 

Big Data NoSQL Solutions NoSQL DBs are needed for Big Data solutions. They play an 

important role in handling Big Data challenges. Table 3.1 gives the examples of widely used 

NoSQL data stores. 



Table 3.1 NoSQL data stores and their characteristic features 
 
 

 

Apache's 

HBase 

HDFS compatible, open-source and non-relational data store written inJava; 

A column-family based NoSQL data store, data store providing BigTable-like 

capabilities (Sections 2.6 and 3.3.3.2); scalability, strong consistency, 

versioning, configuring and maintaining data store characteristics 

 
Apache's 

MongoD

B 

HDFS compatible; master-slave distribution model (Section 3.5.1.3); document-

oriented data store withJSON-like documents and dynamic schemas; open-

source, NoSQL, scalable and non-relational database; used by Websites 

Craigslist, eBay, Foursquare at the backend 

 
Apache's 

Cassandra 

HDFS compatible DBs; decentralized distribution peer-to-peer model (Section 

3.5.1.4); open source; NoSQL; scalable, non-relational, column- family based, 

fault-tolerant and tuneable consistency (Section 3.7) used by Facebook and 

Instagram 

 
 

 
Apache's 

CouchDB 

A project of Apache which is also widely used database for the web. CouchDB 

consists of Document Store. It uses theJSON data exchange format to store its 

documents,JavaScript for indexing, combining and transforming documents, and 

HTTP APis 
 

Oracle 

NoSQ

L 

Step towards NoSQL data store; distributed key-value data store; provides 

transactional semantics for data manipulation , horizontal scalability, simple 

administration and monitoring 

 
Riak 

An open-source key-value store; high availability (using replication concept), 

fault tolerance, operational simplicity, scalability and written in Erlang 
 

 

CAP Theorem Among C, A and P, two are at least present for the 

application/service/process. Consistency means all copies have the same value like 

in traditional DBs. Availability means at least one copy is available in case a 

partition becomes inactive or fails. For example, in web applications, the other 

copy in the other partition is available. Partition means parts which are active but 

may not cooperate (share) as in distributed DBs. 

• Consistency in distributed databases means that all nodes observe the same 

data at the same time. Therefore, the operations in one partition of the 

database should reflect in other related partitions in case of distributed 

database. Operations, which change the sales data from a specific 



showroom in a table should also reflect in changes in related tables which 

are using that sales data. 

• Availability means that during the transactions, the field values must be 

available in other partitions of the database so that each request receivesa 

response on success as well as failure. (Failure causes the response to 

request from the replicate of data). Distributed databases require 

transparency between one another. Network failure may lead to data 

unavailability in a certain partition in case of no replication. Replication 

ensures availability. 

• Partition means division of a large database into different databases 

without affecting the operations on them by adopting specified procedures. 

• Partition tolerance: Refers to continuation of operations as a whole even in 

case of message loss, node failure or node not reachable. 

Brewer's CAP (c.onsistency, Availability and fartition Tolerance) theorem 

demonstrates that any distributed system cannot guarantee C, A and P together. 

 

• Consistency- All nodes observe the same data at the same time. 

 

• Availability- Each request receives a response on success/failure. 

 

• Partition Tolerance-The system continues to operate as a whole even in case of 

message loss, node failure or node not reachable. 

Partition tolerance cannot be overlooked for achieving reliability in a distributed 

database system. Thus, in case of any network failure, a choice canbe: 

• Database must answer, and that answer would be old or wrong data (AP). 

 

• Database should not answer, unless it receives the latest copy of the data(CP). 

The CAP theorem implies that for a network partition system, the choice of consistency 

and availability are mutually exclusive. CA means consistency andavailability, AP means 

availability and partition tolerance and CP means consistency and partition tolerance. 

Figure 3.1 shows the CAP theorem usage in Big Data Solutions. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Schema Less Database 

 

Schema of a database system refers to designing of a structure for datasets and data structures 

for storing into the database. NoSQL data not necessarily have a fixed table schema. The 

systems do not use the concept of Join (between distributed datasets). A cluster-based highly 

distributed node manages a single large data store with a NoSQL DB. Data written at one 

node replicates to multiple nodes. Therefore, these are identical, fault-tolerant and partitioned 

into shards. Distributed databases can store and process a set of information on more than one 

computing nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Increasing Flexibility for Data Manipulation 
 

NoSQL data store possess characteristic of increasing flexibility for data manipulation. 

The new attributes to database can be increasingly added. Late binding of them is also 

permitted. 

BASE Properties BA stands for basic availability, S stands for soft state and E stands 

for eventual consistency. 

l. Basic availability ensures by distribution of shards (many partitions of huge data store) 

across many data nodes with a high degree of replication. Then, a segment failure does not 

necessarily mean a complete data store unavailability. 

• Soft state ensures processing even in the presence of inconsistencies but achieving 

consistency eventually. A program suitably takes into account the inconsistency found 

during processing. NoSQL database design does not consider the need of consistency all 

along the processing time. 

• Eventual consistency means consistency requirement in NoSQL databases meeting 

at some point of time in future. Data converges eventually to a consistent state with no time-

frame specification for achieving that. ACID rules require consistency all along the 

processing on completion of each transaction. BASE does not have that requirement and has 

the flexibility. 

 

• NOSQL DATA ARCHITECTURE PATTERNS 
 

3.3.1 Key-Value Store 
 

The simplest way to implement a   schema-less   data store is   to   use   key-value    pairs. 

The data store characteristics are high performance, scalability and flexibility. Data 

retrieval is fast in key-value pairs data store. A simple  string called, key  maps  to a large 

data string or BLOB (Basic Large Object). Key-value store accesses use a primary key for 

accessing the values. Therefore, the store can be easily scaled up for very large data. The 

concept is similar 



 

dictionary. Query for a word retrieves the meanings, usages, different forms as a 

single 

item in the dictionary. Similarly, querying for key retrieves the values. 

• A query just requests the values and returns the values as a single item. 

Values can be of any data type. 

• Key-value store is eventually consistent. 

 

• Key-value data store may be hierarchical or may be ordered key-value store. 
 

• Returned values on queries can be used to convert into lists, table• columns, data- 

 

frame fields and columns. 

• Have (i) scalability, (ii) reliability, (iii) portability and (iv) low operationalcost. 

• The key can be synthetic or auto-generated. The key is flexible and can be 

represented in many formats: (i) Artificially generated strings created from a hash of 

a value, (ii) Logical path names to images or files, (iii) RESTweb-service calls 

(request response cycles), and (iv) SQL queries. 

Limitations of key-value store architectural pattern are: 

• No indexes are maintained on values, thus a subset of values is not searchable. 

• Key-value store does not provide traditional database capabilities, such as atomicity of 

transactions, or consistency when multiple transactions are executed simultaneously. The 

application needs to implement such capabilities. 

• Maintaining unique values as keys may become more difficult when the volume of data 

increases. One cannot retrieve a single result when a key• value pair is not uniquely 

identified. 

• Queries cannot be performed on individual values. No clause like 'where' in a relational 

database usable that filters a result set. 

 

Table 3.2 Traditional relational data model vs. the key-value store model 
 

Traditional relational model Key-value store model 

Result set based on row values Queries return a single item 



Values of rows for large datasets are indexed No indexes on values 

Same data type values in columns Any data type values 

 

 

 

 
 

Typical uses of key-value store are: 

• Image store, 

• Document or file store, 

• Lookup table, and 

• Query-cache. 

Riak is open-source Erlang language data store. It is a key-value data store system. Data 

auto- 
 

distributes and replicates in Riak. It is thus, fault tolerant and reliable. Some other widely 

used key-value pairs in NoSQL DBs are Amazon's DynamoDB, Redis (often referred as 

Data Structure server), Memcached and its flavours, Berkeley DB, upscaledb (used for 

embedded databases), project Voldemort and Couchbase. 

 

 

Characteristics of Document Data Store are high performance and flexibility. 

Scalability varies, depends on stored contents. Complexity is low compared to 

tabular, object and graph data stores. 

Following are the features in Document Store: 
 

• Document stores unstructured data. 

 

• Storage has similarity with object store. 

 

• Data stores in nested hierarchies. For example, inJSON formats data 

model[Example 3.3(ii)], XML document object model (DOM), or machine-

readable data as one BLOB. Hierarchical information stores in a single unit 

called document tree. Logical data stores together in a unit. 



• Querying is easy. For example, using section number, sub-section number and 

figure caption and table headings to retrieve document partitions. 

• No object relational mapping enables easy search by following paths fromthe 

root of document tree. 

• Transactions on the document store exhibit ACID properties. 

 

Typical uses of a document store are: (i) office documents, (ii) inventory store, 
 

(iii) forms data, (iv) document exchange and (v) document search. 
 

Examples of Document Data Stores are CouchDB and MongoDB. 

CSV and JSON File Formats CSV data store is a format for records CSV does not 

represent object-oriented databases or hierarchical data records. ]SON and XML represent 

semistructured data, object• oriented records and hierarchical data records. ]SON (Java 

Script Object Notation) refers to a language format for semistructured data. ]SON 

represents object-oriented and hierarchical data records, object, and resource arrays in 

JavaScript. 

 

 

 
 

 

JSON Files 

 Semi-structured data 

 object-oriented records and hierarchical data records 

 JSON refers to a language format for semistructured data. JSON represents object-

oriented and hierarchical data records, object, and resource arrays in JavaScript 



Document JSON Format CouchDB Database Apache CouchDB is an open• source 
database. Its features are: 

 CouchDB provides mapping functions during querying, combining and filtering 

of information. 

 CouchDB deploys JSON Data Store model for documents. Each document maintains 

separate data and metadata (schema). 

 CouchDB is a multi-master application. Write does not require field locking when 

controlling the concurrency during multi-master application. 

 CouchDB querying language is JavaScript. Java script is a language which 

 

 

XML 

 
 An extensible, simple and scalable language. Its self-describing format describes 

structure and contents in an easy to understand format 

 XML is widely used. The document model consists of root element and their sub-

elements. XML document model has a hierarchical structure. XML document model 

has features of object-oriented records. XML format finds wide uses in data store and 

 XML document model has a hierarchical structure. XML document model has features 

of object-oriented records. XML format finds wide uses in data store 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analytics processing (AP) In-memory uses columnar storage in memory. A pair of row- 

head and column-head is a key-pair. The pair accesses a field in the table. 

 

 
Column-Family Data Store Column-family data-store has a group of columns as a 

column family. A combination of row-head, column-family head and table• column head 

can also be a key to access a field in a column of the table during querying. Combination of 

row head, column families head, column-family head and column head for values in 

column fields can 

 

also be a key to access fields ofa column. A column-family head is also called a super-

column head. 

Sparse Column Fields A row may associate a large number of columns but contains 

values in few column fields. Similarly, many column fields may not have data. Columns are 

logically grouped into column families. Column-family data stores are then similar to 

sparse matrix data. Most elements of sparse matrix are empty. Data stores at memory 



addresses is columnar- family based rather than as row based. Metadata provide the 

column-family indices of not empty column fields. 

That facilitates OLAP of not empty column families faster. For example, assume hash key 

in a column heading field and values in successive rows at one column family. For another 

key, the values will be in another column family. 

Grouping of Column Families Two or more column-families in data store form a super 

group, called super column. Table 3.3 consists of one such group (super column), 'Nestle 

Chocolate Flavours Group'. 

Grouping into Rows When number of rows are very large then horizontal partitioning of 

the table is a necessity. Each partition forms one row-group. For example, a group of 1 

million rows per partition. A row group thus has all column data store in the memory for 

in-memory analytics. Practically, row groups are chosen such that memory required for the 

group is above, say 10 MB and below the maximum size which can cached and buffered 

in memory, say 1 GB for in-memory analytics. 

Characteristics of Columnar Family Data Store Columnar family data store imbibes 

characteristics of very high performance and scalability, moderate level 

of flexibility and lower complexity when compared to the object and graph databases. 

Advantages of column stores are: 

l. Scalability: The database uses row IDs and column names to locate a column and 

values at the column fields. The interface for the fields is simple. The back-end 

system can distribute queries over a large number of processing nodes without 

performing any Join operations. The retrieval of data from the distributed node can be 

least complicated by an intelligent plan of row IDs and columns, thereby increasing 

performance. Scalability means addition of number of rows as the number of 

ACVMs increase in Example1.6(i). Number of processing instructions is proportional 

to the number of ACVMs due to scalable operations. 

 

• Partitionability: For example, large data of ACVMs can be partitioned into datasets 

of size, say 1 MB in the number of row-groups. Values in columns of each row-



group,process in-memory at a partition. Values in columns of each row-group 

independently parallelly process in- memory at the partitioned nodes. 

• Availability: The cost of replication is lower since the system scales on distributed 

nodes efficiently. The lack of Join operations enables storing a part of a column- 

family matrix on remote computers. Thus, the data is always available in case of 

failure of any node. 

• Tree-like columnar structure consisting of column-family groups, column families 

and columns. The columns group into families. The column families group into 

column groups (super columns). A key for the column fields consists of three 

secondary keys: column- families group ID, column•family ID and column-head 

name. 

• Adding new data at ease: Permits new column Insert operations. Trigger operation 

creates new columns on an Insert. The column-field values can add after the last 

address in memory if the column structure is known in advance. New row-head field, 

row-group ID field, column-family group, column family and column names can be 

created at any time to add new data. 

• Querying all the field values in a column in a family, all columns in the family or a 

group of column-families, is fast in in-memory column-family data store. 

• Replication of columns: HDFS-compatible column-family data stores replicate each 

data store with default replication factor= 3. 

• No optimization for Join: Column-family data stores are similar to sparse matrix 

data. The data do not optimize for Join operations. 

Big Table Data Store 
 

Examples of widely used column-family data store are Google's BigTable, HBase and 

Cassandra. Keys for row key, column key, timestamp and attribute uniquely identify the 

values in the fields 

Following are features of a BigTable: 
 

 Massively scalable NoSQL. BigTable scales up to 100s of petabytes. 



 Integrates easily with Hadoop and Hadoop compatible systems. 

 Compatibility with MapReduce, HBase APis which are open-source Big Data 

platforms. 

 Key for a field uses not only row_ID and Column_ID (for example, ACVM_ID and 

KitKat 

 

in Example 3.6) but also timestamp and attributes. Values are ordered bytes. 

Therefore, multiple versions of values may be present in the BigTable. 

 Handles million of operations per second. 

 Handle large workloads with low latency and high throughput 

 Consistent low latency and high throughput 

 APis include security and permissions 

 BigTable, being Google's cloud service, has global availability and its service is 

seamless. 

RC File Format 

Hive uses Record Columnar (RC) file-format records for querying. RC is the best choice for 

intermediate tables for fast column-family store in HDFS with Hive.Serializability of RC table 

column data is the advantage. RC file is DeSerializable into column data. 

ORC File Format 

 

An ORC (Optimized Row Columnar) file consists of row-group data called stripes. ORC 

enables concurrent reads of the same file using separate RecordReaders. Metadata store 

uses Protocol Buffers for addition and removal of fields. 1 

ORC is an intelligent Big Data file format for HDFS and Hive.2 An ORC file stores a 

collections of rows as a row-group. Each row-group data store in columnar format. This 

enables parallel processing of multiple row-groups in anHDFS cluster. 

An ORC file consists of a stripe the size of the file is by default 256 MB. Stripe consists 

of indexing (mapping) data in 8 columns, row-group columns data (contents) and stripe 

footer (metadata). An ORC has two sets of columns data instead of one column data in RC. 

One column is for each map or list size and other values which enable a query to decide 



skipping or reading of the mapped columns. A mapped column has contents required by 

the query. The columnar layout in each ORC file thus, optimizes for compression and 

enables skipping of data in columns. This reduces read and decompression load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keys to access or skip a content column in ORC file 

format 

 

Parquet File Formats 

Parquet is nested hierarchical columnar-storage concept. Nesting sequence is the table, 

row group, column chunk and chunk page. Apache Parquet file is columnar-family store 

file. Apache Spark SQL executes user defined functions (UDFs) which query the Parquet 

file columns. A programmer writes the codes for an UDF and creates the processing 

function for big long queries. 

A Parquet file uses an HDFS block. The block stores the file for processing queries on 

Big Data. The file compulsorily consists of metadata, though the file need not consist of 

data. 

The Parquet file consists of row groups. A row-group columns data process in memory 

after data cache and buffer at the memory from the disk. Each row group has a number of 

columns. A row group has Ncol columns, and row group consists of Ncol column chunks. 

This means each column chunk consists of values saved in each column of each row group. 



A column chunk can be divided into pages and thus, consists of one or more pages. The 

column chunk consists of a number of interleaved pages, Npg• A page is a conceptualized 

unit which can be compressed or encoded together at an instance. The unit is minimum 

portion of a chunk which is read at an instance for in-memory analytics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combination of keys for content page in the Parquet file 

format 

 

Object Data Store 

An object store refers to a repository which stores the: 
 

• Objects (such as files, images, documents, folders, and business reports) 

 

• System metadata which provides information such as filename, creation_date, 

last_modified, language_used (such as Java, C, C#, C++, Smalltalk, Python), 

access_permissions, supported query languages) 

• Custom metadata which provides information, such as subject, category, sharing 

permissions. 
 

Metadata enables the gathering of metrics of objects, searches, finds the contents and specifies 

the objects in an object data-store tree. Metadata finds the relationships among the objects, 

maps the object relations and trends. Object Store metadata interfaces with the Big Data. API 

first mines the metadatato enable mining of the trends and analytics. The metadata defines 

classes and properties of the objects. Each Object Store may consist of a database. Document 



content can be stored in either the object store database storage area or in a file storage area. A 

single file domain may contain multiple Object Stores. 

 

Object Relational Mapping 

The following example explains object relational mapping 
 

high and the performance is variable with scalability. Data store as series of interconnected 

nodes. Graph with data nodes interconnected provides one of the best database system when 

relationships and relationship types have critical values. 

Nodes represent entities or objects. Edges encode relationships between nodes. Some 

operations become simpler to perform using graph models. Examples of graph model usages 

are social networks of connected people. The connections to related persons become easier to 

model when using the graph model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
 

Graph Data base for Car Model Sale 
 

Characteristics of graph databases are: 
 

• Use specialized query languages, such as RDF uses SPARQL 

 

• Create a database system which models the data in a completely different 

way than the key-values, document, columnar and object data store models. 

• Can have hyper-edges. A hyper-edge is a set of vertices of a hypergraph. 

Ahypergraph is a generalization of a graph in which an edge can join any 

number of vertices (not only the neighbouring vertices). 

• Consists of a collection of small data size records, which have complex 

interactions between graph-nodes and hypergraph nodes. Nodes represent the 

entities or objects. Nodes use Joins. Node identification can use URI or other 

tree-based structure. The edge 

 

encodes a relationship between the nodes. 
 

Graph databases have poor scalability. They are difficult to scale out on multiple 

servers. This is due to the close connectivity feature of each node in thegraph. Data can 

be replicated on multiple servers to enhance read and the query processing 

performance. Write operations to multiple servers and graph queries that span multiple 

nodes, can be complex to implement. 

Typical uses of graph databases are: (i) link analysis, (ii) friend of friend queries, (iii) Rules 

and inference, (iv) rule induction and (v) Pattern matching. Link analysis is needed to perform 

searches and look for patterns and relationships in situations, such as social networking, 

telephone, or email 

Examples of graph DBs are Neo4J, AllegroGraph, HyperGraph, Infinite Graph, Titan and 

FlockDB. Neo4J graph database enable easy usages by Java developers. Neo4J can be designed 



fully ACID rules compliant. Design consists of adding additional path traversal in between the 

transactions such that data consistency is maintained and the transactions exhibit ACID 

properties. 

• NO SQL to Manage Big Data 
 

NoSQL Solutions for Big Data 
 

Big Data solution needs scalable storage of terabytes and petabytes, dropping ofsupport for 

database Joins, and storing data differently on several distributed servers (data nodes) together 

as a cluster. A solution, such as CouchDB, DynamoDB, MongoDB or Cassandra follow CAP 

theorem (with compromising the consistency factor) to make transactions faster and easier to 

scale. A solution must also be partitioning tolerant 

Characteristics of Big Data NoSQL solution are: 
 

l. High and easy scalability: NoSQL data stores are designed to expand horizontally. 

Horizontal scaling means that scaling out by adding more machines as data nodes 

(servers) into the pool of resources (processing, memory, network connections). The 

design scales out using multi- utility cloud services. 

• Support to replication: Multiple copies of data store across multiple nodes ofa 

cluster. This ensures high availability, partition, reliability and fault tolerance. 

• Distributable: Big Data solutions permit sharding and distributing of shards on 

multiple clusters which enhances performance and throughput. 

• Usages ofNoSQL servers which are less expensive. NoSQL data stores requireless 

management efforts. It supports many features like automatic repair, easier data 

distribution and simpler 

 

data models that makes database administrator (OBA) and tuning requirements less 

stringent. 
 

• Usages of open-source tools: NoSQL data stores are cheap and open source. Database 

implementation is easy and typically uses cheap servers to manage the exploding data 

and transaction while RDBMS databases are expensive and use big servers and 



storage systems. So, cost per gigabyte data store and processing of that data can be 

many times less than the cost ofRDBMS 

• Support to schema-less data model: NoSQL data store is schema less, so data can be 

inserted in a NoSQL data store without any predefined schema. So, the format or data 

model can be changed any time, without disruption of application. Managing the 

changes is a difficult problem in SQL. 

• Support to integrated caching: NoSQL data store support the caching in system 

memory. That increases output performance. SQL database needs a separate 

infrastructure for that. 

• No inflexibility unlike the SQL/RDBMS, NoSQL DBs are flexible (not rigid) and 

have no structured way of storing and manipulating data. SQL stores in the form of 

tables consisting of rows and columns. NoSQL data stores have flexibility in 

following ACID rules. 

Types ofBig Data Problems 

Big Data problems arise due to limitations of NoSQL and other DBs. The following 

types of problems are faced using Big Data solutions. 

• Big Data need the scalable storage and use of distributed servers together as a 

cluster. Therefore, the solutions must drop support for the database Joins 

• NoSQL database is open source and that is its greatest strength but at the 

same time its greatest weakness also because there are not many defined 

standards for NoSQL data stores. Hence, no two NoSQL data stores are equal. 

For example: 

• No stored procedures in MongoDB (NoSQL data store) 

 
• GUI mode tools to access the data store are not available in the market 

 

• Lack of standardization 

 
• NoSQL data stores sacrifice ACID compliancy for flexibility and processingspeed. 

 

Comparison of NOSQL/RDBMS 
 

Feature NOSQL Data Store SQL/RDBMS 



Model Schema-less model Relational 

Schema Dynamic schema Predefined 

Types of data 

architecture 

patterns 

 

Key/value based, column-family based, document 

based, graph based, object based 

 
Table based 

Scalable Horizontally scalable 
Vertically 

scalable 

Use ofSQL No Yes 

Dataset size preference  
Prefers large datasets 

Large dataset 

not preferred 

Consistency Variable Strong 

Vendor support Open source Strong 
 

ACID properties 
May not support, instead follows Brewer's CAP 

theorem or BASE properties 
Strictly follows 

 
 

• SHARED-NOTHING ARCHITECTURE FOR BIG DATA TASKS 

 
The columns of two tables relate by a relationship. A relational algebraic equation specifies 

the relation. Keys share between two or more SQL tables in RDBMS. Shared nothing (SN) 

is a cluster architecture. A node does not share data with any other node. 

Data of different data stores partition among the number of nodes (assigning different 

computers to deal with different users or queries). Processing may require every node to 

maintain its own copy of the application's data, using a coordination protocol. Examples 

are using the partitioning and processing are Hadoop, Flink and Spark. 

The features of SN architecture are as follows: 
 

l. Independence: Each node with no memory sharing; thus possesses computational self- 

sufficiency 

• Self-Healing: A link failure causes creation of another link 

 

• Each node functioning as a shard: Each node stores a shard (a partition of large DBs) 

 

• No network contention 

 
 



Choosing the Distribution Models 
 

Big Data requires distribution on multiple data nodes at clusters. Distributed software 

components give advantage of parallel processing; thus providing horizontal scalability. 

Distribution gives (i) ability to handle large-sized data, and (ii) processing of many read 

and write operations simultaneously in an application. A resource manager manages, 

allocates, and schedules the resources of each processor, memory and network connection. 

Distribution increases the availability when a network slows or link fails. Four models for 

distribution of the data store are given below: 

Single Server Model 

Simplest distribution option for NoSQL data store and access is Single Server Distribution 

(SSD) of an application. A graph database processes the relationships between nodes at a 

server. The SSD model suits well for graph DBs. Aggregates of datasets may be key-value, 

column-family or BigTable data stores which require sequential processing. These data 

stores also use the SSD model. An application executes the data sequentially on a single 

server. Figure 3.9(a) shows the SSD model. Process and datasets distribute to a single 

server which runs the application. 

Sharding Very Large Databases 

Figure shows sharding of very large datasets into four divisions, each running the 

application on four i,j, k and l different servers at the cluster. DBi, DBj, DBk and DB1 are 

four 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
(a) Single server model (b) Shards distributed on four servers in a cluster 

The application programming model in SN architecture is such that an application process 

runs on 
 

multiple shards in parallel. Sharding provides horizontal scalability. A data store may add 

an auto- sharding feature. The performance improves in the SN. However, in case of a link 

failure with the application, the application can migrate the shard DB to another node. 

Master Slave Distribution 

Master directs the slaves. Slave nodes data replicate on multiple slave servers in Master 

Slave Distribution (MSD) model. When a process updates the master, it updates the slaves 

also. A process uses the slaves for read operations. Processing performance improves when 

process runs large datasets distributed onto the slave nodes. Figure 3.10 shows an example 

of MongoDB. MongoDB database server is mongod and the client is mongo. 

Master-Slave Replication Processing performance decreases due to replication in MSD 

distribution model. Resilience for read operations is high, which means if in case data is 

not available from a slave node, then it becomes available from the replicated nodes. 

Master uses the distinct write and read paths. 

Complexity Cluster-based processing has greater complexity than the other architectures. 

Consistency can also be affected in case of problem of significant time taken for updating 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.10 Master-slave distribution model. Mongo is a client and mangod is the 

server 



 

Peer-to-Peer Distribution Model 
 

Peer-to-Peer distribution (PPD) model and replication show the following characteristics: 

(1) All replication nodes accept read request and send the responses. (2) All replicas 

function equally. (3) Node failures do not cause loss of write capability, as other replicated 

node responds. 

Cassandra adopts the PPD model. The data distributes among all the nodes in a cluster. 

Performance can further be enhanced by adding the nodes. Since nodes read and write both, 

a replicated node also has updated data. Therefore, the biggest advantage in the model 

is 

 

consistency. When a write is on different nodes, then write inconsistency occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shards replicating on the nodes, which does read and writeoperations 

both 

 

 
Choosing Master-Slave versus Peer-to-Peer 

Master-slave replication provides greater scalability for read operations. Replication 

provides resilience during the read. Master does not provide resilience for writes. Peer-to-

peer replication provides resilience for read and writes both. 



Sharing Combining with Replication Master-slave and sharding creates multiple masters. 

However, for each data a single master exists. Configuration assigns a master to a group of 

datasets. Peer-to-peer and sharding use same strategy for the column-family data stores. 

The shards replicate on the nodes, which does read and write operations both. 

Ways of Handling Big Data Problems 

 

 

 

 

 

 

 

 

 

 

 

 
 

Four ways for handling big data problems 

 
 

 

Following are the ways: 

l. Evenly distribute the data on a cluster using the hash rings: Consistent hashing refers to 

a process where the datasets in a collection distribute using a hashing algorithm which 

generates the pointer for a collection. Using only the hash of Collection_ID, a Big Data 

solution client node determines the data location in the cluster. Hash Ring refers to a map 

of hashes with locations. The client, resource manager or scripts use the hash ring for data 

searches and Big Data solutions. The ring enables the consistent assignment and usages of 

the dataset to a specific processor. 

• Use replication to horizontally distribute the client read-requests: Replication means 

creating backup copies of data in real time. Many Big Data clusters use replication to make 

the failure-proof retrieval of data in a distributed environment. Using replication enables 

horizontal scaling out of the client requests. 



• Moving queries to the data, not the data to the queries: Most NoSQL data stores use 

cloud utility services (Large graph databases may use enterprise servers). Moving client node 

queries to the data is efficient as well as a requirement in Big Data solutions. 

• Queries distribution to multiple nodes: Client queries for the DBs analyze at the 

analyzers, which evenly distribute the queries to data nodes/ replica nodes. High 

performance query processing requires usages of multiple nodes. The query execution takes 

place separately from the query evaluation (The evaluation means interpreting the query and 

generating a plan for its execution sequence). 

• MONGODB DATABASE 

MongoDB is an open source DBMS. MongoDB programs create and manage databases. 

MongoDB manages the collection and document data store. MongoDB 

functions do querying and accessing the required information. The functions include 

viewing, querying, changing, visualizing and running the transactions. Changing includes 

updating, inserting, appending or deleting. 

MongoDB is (i) non-relational, (ii) NoSQL, (iii) distributed, (iv) open source, (v) 

document based (vi) cross-platform, (vii) Scalable, (viii) flexible data model, (ix) Indexed, 

(x) multi- master and (xi) fault tolerant. Document data store in SON-like documents. The 

data store uses the dynamic schemas. 

The typical MongoDB applications are content management and delivery systems, 

mobile 
 

applications, user data management, gaming, e-commerce, analytics, archiving and 

logging. Features of Mango D B 

MongoDB data store is a physical container for collections. Each DB gets its own set of 

files on the file system. A number of DBs can run on a single MongoDB server. DB 

is default DB in MongoDB that stores within a data folder. The database server 

ofMongoDB is mongod and the client is mongo. 

• Collection stores a number of MongoDB documents. It is analogous to a table of 

RDBMS. A collection exists within a single DB to achieve a singlepurpose. 

Collections may store documents that do not have the same fields. Thus, documents 



of the collection are schema- less. Thus, it is possible to store documents of varying 

structures in a collection. Practically, in an RDBMS, it is required to define a 

column and its data type, but does not need them while working with the 

MongoDB. 

• Document model is well defined. Structure of document is clear, Document is the 

unit of storing data in a MongoDB database. Documents are analogousto the 

records of RDBMS table. Insert, update and delete operations can beperformed on a 

collection. Document use 

]SON OavaScript Object Notation) approach for storing data. ]SON is a 

lightweight, self- describing format used to interchange data between various 

applications. JSON data basically has key-value pairs. Documents have dynamic 

schema. 

• MongoDB is a document data store in which one collection holds 

differentdocuments. Data store in the form of ]SON-style documents. Number of 

fields, content and size of the document can differ from one document to another. 

• Storing of data is flexible, and data store consists of JSON-like documents. This 

implies that the fields can vary from document to document and data structure can 

be changed over time; ]SON has a standard structure, and scalable way of 

describing hierarchical data (Example 3.3(ii)). 

• Storing of documents on disk is in BSON serialization format. BSON is a binary 

representation of JSON documents. The mongo JavaScript shell and MongoDB 

language drivers perform translation between BSON and language-specific 

document representation. 

• Querying, indexing, and real time aggregation allows accessing and 

analyzing the data efficiently. 

 

• Deep query-ability-Supports dynamic queries   on   documents   using 

adocument- based query language that's nearly as powerful as SQL. 

• No complexJoins. 



 

• Distributed DB makes availability high, and provides horizontal scalability. 

 

• Indexes on any field in a collection of documents: Users can create indexes on any 

field in a document. Indices support queries and operations. By default, MongoDB 

creates an index on the _id field of every collection. 

• Atomic operations on a single document can be performed even though support of 

multi- document transactions is not present. The operations are alternate to ACID 

transaction requirement of a relational DB. 

• Fast-in-place updates: The DB does not have to allocate new memory location and 

write a full new copy of the object in case of data updates. This results into high 

performance for frequent update use cases. For example, incrementing a counter 

operation does not fetch the document from the server. Here, the increment 

operation can simply be set. 

• No configurable cache: MongoDB uses all free memory on the system 

automatically by way of memory-mapped files (The operating systems use the 

similar approach with their file system caches). The most recently used data is kept 

in RAM. If indexes are created for queries and the working dataset fits in RAM, 

MongoDB serves all queries from memory. 

• Conversion/mapping of application objects to data store objects not needed 

Dynamic Schema Dynamic schema implies that documents in the same collection do not 

need to have the same set of fields or structure. Also, the similar fields in a document may 

contain different types of data. Table 3.8 givesthe comparison with RDBMS 

RDBMS MongoDB 

Database Data store 

Table Collection 

Column Key 

Value Value 

Records / Rows / Tuple Document/ Object 

Joins Embedded Documents 

Index Index 



Primary key Primary key (_id) is default key provided by 

MongoDB itself 

Comparison of Mango DB and RDBMS 

 

Replication: Replication ensures high availability in Big Data. Presence of multiple copies 

increases on different database servers. This makes DBs fault• tolerant against any 

database server failure. Multiple copies of data certainly help in localizing the data and 

ensure availability of data in a distributed system environment. 

MongoDB replicates with the help of a replica set. A replica set in MongoDB is a group 

of mongod (MongoDb server) processes that store the same dataset. Replica sets provide 

redundancy but high availability. A replica set usually has minimum three nodes. Any one 

out of them is called primary. The primary node receives all the write operations. All the 

other nodes are termed as secondary. The data replicates from primary to secondary nodes. 

A new primary node can be chosen among the secondary nodes at the time of automatic 

failover or maintenance. The failed node when recovered can join the replica set as 

secondary node again. 

Commands Description 

rs.initiate() To initiate a new replica set 

rs.conf () To check the replica set configuration 

rs.status () To check the status of a replica set 

rs.add () To add members to a replica set 

S 

Figure shows a replicated dataset after creating three secondary membersfrom a primary 

member. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Figure 3.13 Replicated set on creating secondary members 

Auto-sharding :Sharding is a method for distributing data across multiple machines in 

a distributed application environment. MongoDB uses sharding to provide services to Big 

Data 

 

applications. 

A single machine may not be adequate to store the data. When the data size increases, do 

not provide data retrieval operation. Vertical scaling by increasing the resources of a single 

machine is quite expensive. Thus, horizontal scaling of the data can be achieved using 

sharding mechanism where more database servers can be added to support data growth and 

the demands of more read and write operations. 

Sharding automatically balances the data and load across various servers. Sharding 

provides additional write capability by distributing the write load over a number of mongod 

(MongoDB Server) instances. 

Type Description 

Double Represents a float value. 

String UTF-8 format string. 

Object Represents an embedded document. 

Array Sets or lists of values. 

Binary 

data 

 

String of arbitrary bytes to store images, binaries. 

 

Object id 

Objectlds (MongoDB document identifier, equivalent to a primary key) are: 

small, likely unique, fast to generate, and ordered. The value consists of 12- 

bytes, where the first four bytes are for timestamp that reflects the instance 

when Objectld creates. 

Boolean Represents logical true or false value. 
 

Date BSON Date is a 64-bit integer that represents the number of milliseconds 

since the Unix epoch Oan 1, 1970). 

Null Represents a null value. A value which is missing or unknown is Null. 



Regular 

Expressio

n 

 

RegExp maps directly to aJavaScript RegExp 

32-bit 

integer 

 

Numbers without decimal points save and return as 32-bit integers. 

 

 
Timestamp 

A special timestamp type for internal MongoDB use and is not associated 

with the regular date type. Timestamp values are a 64-bit value, where first 

32 bits are time, t (seconds since the Unix epoch), and next 32 bits are an 

incrementing ordinal for operations within a given second. 

64-bit 

integer 
Number without a decimal point save and return as 64-bit integer . 

 
 

 

Min key 
MinKey compare less than all other possible BSON element values, 

respectively, and exist primarily for internal use. 

 

Max key 
MaxKey compares greater than all other possible BSON element values, 

respectively, and exist primarily for internal use. 
 

 

Data Types which Mango DB document Supports 

 

 
Rich Queries and Other DB Functionalities MongoDB offers a rich set of features and 

functionality compared to those offered in simple key-value stores. They can be 

comparable to those offered by any RDBMS. MongoDB has a complete query language, 

highly-functional secondary indexes (including text search and geospatial), and a powerful 

aggregation framework for data analysis. MongoDB provides functionalities comparison of 

features. 

 

 

Features RDBMS MongoDB 

Rich Data Model No Yes 

Dynamic Schema No Yes 

Typed Data Yes Yes 

Data Locality No Yes 

Field Updates Yes Yes 

Complex Transactions Yes No 

Auditing Yes Yes 

Horizontal Scaling No Yes 



Comparison of features MongoDB with respect to RDBMS 
 
 

Command Functionality 
 

Mongo Starts MongoDB; (*mongo is MongoDB client). The defaultdatabase in 

MongoDB is test. 

db.help() Runs help. This displays the list of all the commands. 

db.stats() Gets statistics about MongoDB server. 
 
 

Use <database name) Creates database 

Db Outputs the names of existing database, if created earlier 

Dbs Gets list of all the databases 

db.dropDatabase () Drops a database 

db.database 

name.insert () 

 

Creates a collection using insert () 

db.<database name>. find()  
Views all documents in a collection 

db.<database 

name>.update () 

 

Updates a document 

db.<database 

name>.remove () 

 

Deletes a document 

 

 

MongoDB querying commands 

Following explains the sample usages of the commands: 

To Create database Command use - use command creates a database; For example, 

Command use lego creates a database named lego. (A sample database is created to 

demonstrate subsequent queries. The Lego is an international toy brand). Default database 

in MongoDB is test. 

To see the existence of database Command db - db command shows that 

lego database is created. 

To get list of all the databases Command show dbs - This command 

shows the names of all the databases. 

To drop database Command db. dropDatabase () - This command drops a database. 

Run use lego command before the db. dropDatabase () command to drop lego Database. If 

no database is selected, the default database test will be dropped. 



To create a collection Command insert () -Tocreate a collection, the easiest way is to 

insert a record (a document consisting of keys (Field names) and Values) into a collection. 

A new collection will be created, if the collection does not exist. The following statements 

demonstrate the creation of a collection with three fields (ProductCategory, Productld and 

ProductName) in the lego: 

 

 

 
 

To view all documents in a collection Command db. <database name>. find ()-Find 

command is equivalent to select query of RDBMS. Thus, "Select * from lego" can be 

written as db. lego. find () in MongoDB. MongoDB created unique objecteld ("_id") on its 

own. This is the primary key of the collection. Command db. <database name>. find() 

.pretty() gives a prettier look. 

To update a document Command db. <database name>. update ()-Update command is 

used to change the field value. By default, multi attribute is false. If 

{multi: true} is not written then it will update only the first document. 

To delete a document Command db. <database name>. remove () - Remove command 

is used to delete the document. The  query  db. <database name>. remove ( ("ProdctID": 

10725)) removes the document whose productld is 10725. 

To add array in a collection Command insert () - Insert command can also be used to 

insert multiple documents into a collection at one time. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
CASSANDRA DATA BASE 

Cassandra was developed by Facebook and released by Apache. Cassandra was named 

after 
 

Trojan mythological prophet Cassandra, who had classical allusions to a curse on oracle. 

Later on, IBM also released the enhancement of Cassandra, as open 

source version. The open source version includes an IBM Data Engine which processes No 

SQL data store. The engine has improved throughput when workload of read-operations is 

intensive. 

Cassandra is basically a column family database that stores and handles massive data of 

any format including structured, semi-structured and unstructured data. 

Apache Cassandra DBMS contains a set of programs. They create and manage databases. 

Cassandra provides functions (commands) for querying the data and accessing the required 

information. Functions do the viewing, querying and changing (update, insert or append or 

delete), visualizing and perform transactions on the DB. 

Apache Cassandra has the distributed design of Dynamo. Cassandra is written in Java. Big 

organizations, such as Facebook, IBM, Twitter, Cisco, Rackspace, eBay, Twitter and 

Netflix have adopted Cassandra. 

Characteristics of Cassandra are (i) open source, (ii) scalable (iii) non• relational (v) 
NoSQL 

(iv) Distributed (vi) column based, (vii) decentralized, (viii) fault tolerant and (ix) tuneable 

consistency. 

Features of Cassandra are as follows: 

• Maximizes the number of writes - writes are not very costly (time consuming) 



 

• Maximizes data duplication 

 
• Does not support Joins, group by, OR clause and aggregations 

 

• Uses Classes consisting of ordered keys and semi-structured data storage systems 
 

• Is fast and easily scalable with write operations spread across the cluster. The cluster 

does not have a master-node, so any read and write can be handled by any node in the 

cluster. 

• Is a distributed DBMS designed for handling a high volume of structured data across 

multiple cloud servers 

Has peer-to-peer distribution in the system across its nodes, and the data is distributed 

among all the nodes in a cluster. 

Data Replication Cassandra stores data on multiple nodes (data replication) and thus has 

no single point of failure, and ensures availability, a requirement in CAP theorem. Data 

replication uses a replication strategy. Replication factor determines the total number 

of 

 

replicas placed on different nodes. Cassandra returns the most recent value of the data to 

the client. If it has detected that some of the nodes responded with a stale value, Cassandra 

performs a read repair in the background to update the stale values. 

Components at Cassandra Table 3.13 gives the components at Cassandra and their 

description 

Component Description 

Node Place where data stores for processing 

Data Center Collection of many related nodes 

Cluster Collection of many data centers 

Commit log Used for crash recovery; each write operation written to commit log 

Mem-table Memory resident data structure, after data written in commit log, data 

write in mem-table temporarily 

SSTable When mem-table reaches a certain threshold, data flush into an SSTable disk 

file 



Bloom filter Fast and memory-efficient, probabilistic-data structure to find whether an 

element is present in a set, Bloom filters are accessed after every query. 

Scalability Cassandra provides linear scalability which increases the throughput and 

decreases the response time on increase in the number of nodes at cluster. 

Transaction Support Supports ACID properties (Atomicity, Consistency, 

Isolation, and Durability). 

Replication Option Specifies any of the two replica placement strategy names. The 

strategy names are Simple Strategy or Network Topology Strategy. The replica 

placement strategies are: 

Simple Strategy: Specifies simply a replication factor for the cluster. 

Network Topology Strategy: Allows setting the replication factor for each data 

center independently. 

Table 3.14 Data types built into Cassandra, their usage and description 

CQL 

Type 

 
Description 

ascii US-ASCII character string 

bigint 64-bit signed long integer 

blob Arbitrary bytes (no validation), BLOB expressed in hexadecimal 

boolean True or false 

counter Distributed counter value (64-bit long) 

 
 

decimal Variable-precision decimal integer, float 

double 64-bit IEEE-754 double precession floating point integer, float 

float 32-bit IEEE-754 single precession floating point integer, float 

 

inet 

IP address string in 1Pv4 or 1Pv6 format, used by the python-cql driver and CQL 

native protocols 

int 32-bit signed integer 

list A collection of one or more ordered elements 

map AJSON-style array of literals: {literal: literal, literal: literal ...} 

set A collection of one or more elements 

text UTF-8 encoded string 

timestamp Date plus time, encoded as 8 bytes since epoch integers, strings 

varchar UTF-8 encoded string 

varint Arbitrary-precision integer 



Cassadra Data Model Cassandra Data model is based on Google's BigTable Each value maps 

with two strings (row key, column key) and timestamp, similar to HBase.The database can be 

considered as a sparse distributed multi-dimensional sorted map. Google file system splits the 

table into multiple tablets (segments of the table) along a row. Each tablet, called METAl 

tablet, maximum size is 200 MB, above which a compression algorithm used. META0 is the 

master- server. Querying by META0 server retrieves a METAl tablet. During execution of the 

application, caching of locations of tablets reduces the number of queries. 

Cassandra Data Model consists of four main components: (i) Cluster: Made up of multiple 

nodes and keyspaces, (ii} Keyspace: a namespace to group multiple column families, 

especially one per partition, 

Column: consists of a column name, value and timestamp and (iv) Column• family: multiple 

columns with row key reference. Cassandra does keyspace management using partitioning of 

keys into ranges and assigning different key• ranges to specific nodes. 

Following Commands prints a description (typically a series of DDL statements) of a schema 

element or the cluster: 

DESCRIBE 

CLUSTER 

DESCRIBE 

SCHEMA 

 

DESCRIBE KEYSPACES 

DESCRIBE KEYSPACE 

<keyspace name> DESCRIBE 

TABLES 

DESCRIBE TABLE <table 

name> DESCRIBE INDEX 

<index name> 

DESCRIBE MATERIALIZED VIEW <view 

name>DESCRIBE TYPES 

DESCRIBE TYPE 

<type name> 



DESCRIBE 

FUNCTIONS 

 

DESCRIBE FUNCTION <function name>DESCRIBE 

AGGREGATES 

DESCRIBE AGGREGATE <aggregate function name> 

 

Consistency Command CONSISTENCY shows the current consistency level. 

CONSISTENCY <LEVEL> sets a new consistency level. Valid consistency levels 

are ANY, ONE, TWO, THREE,QUORUM, LOCAL_ONE, LOCAL_QUORUM, 

EACH_QUORUM, SERIAL AND LOCAL_SERIAL. Following are their meanings: 
 

• ALL: Highly consistent. A write must be written to commitlog 

andmemtable on all replica nodes in the cluster. 

• EACH_QUORUM: A write must be written to commitlog and memtable 

onquorum of replica nodes in all data centers. 

• LOCAL_QUORUM: A write must be written to commitlog and memtable 

onquorum of replica nodes in the same center. 

• ONE: A write must be written to commitlog and memtable of at least 

onereplica node. 

• TWO, THREE: Same as One but at least two and three replica nodes, 

respectively. 

• LOCAL_ONE: A write must be written for at least one replica node in the 

local data center. 

• ANY: A write must be written to at least one node. 

• SERIAL: Linearizable consistency to prevent unconditional update. 

• LOCAL_SERIAL: Same as Serial but restricted to the local data center. 

 

Keyspaces A keyspace (or key space) in a NoSQL data store is an object that 

contains all column families of a design as a bundle. Keyspace is the 

outermostgrouping of the data in the data store. It is similar to relational database. 



Generally, there is one keyspace per application. Keyspace in Cassandra is a 

namespace that defines data replication on nodes. A cluster contains one keyspace 

per node. 

Create Keyspace Command CREATE KEYSPACE <Keyspace Name> WITH 

replication = {'class': '<Strategy name>', 'replication_factor': '<No. of 

replicas>'}AND durable_writes= '<TRUE/FALSE>'; 

 

CREATE KEYSPACE statement has attributes replication with option class and 

replication factor, and durable_write. 

Default value of durable_ writes properties of a table is set to  true. That 

commands the Cassandra to use Commit Log for updates on the current Keyspace 

true or false. The option is not compulsory. 

• ALTER KEYSPACE command changes (alter) properties, such as the 

numberof replicas and the durable_writes of a keyspace: ALTER 

KEYSPACE 

<Keyspace Name> WITH replication = {'class': '<Strategy name>', 

'replication_factor': '<No. of replicas>'}; 

• DESCRIBE KEYSPACE command displays the existing keyspaces. 

 
• DROP KEYSPACE command drops a keyspace: 

 
• Re-executing the drop command to drop the same keyspace will result in 

configuration exception. 

• Use KEYSPACE command connects the client session with a keyspace. 
 

 
 

Command Functionality 
 

CQLSH 
A command line shell for interacting with Cassandra throughCQL 

HELP Runs help. This displays the list of all the commands 

CONSISTENCY Shows the current consistency level 

EXIT Terminate the CQL shell 



SHOW HOST Displays the host 
 
 

SHOW VERSION Displays the details of current cqlsh session such as host,Cassandra 

version, or data type assumptions 

CREATE KEYSPACE 

<Keyspace Name> 

 

Creates keyspace with a name 

DESCRIBE KEYSPACE 

<Keyspace Name> 

 

Displays the keyspace with a name 

ALTER KEYSPACE 

<Keyspace Name> 

 

Modifies keyspace with a name 

DROP KEYSPACE 

<Keyspace Name> 

 

Deletes keyspace with a name 

CREATE (TABLE I 

COLUMNFAMILY) 

 

Creates a table or column family 

COLLECTIONS Lists the Collections 

 

CQL commands and their functionalities 

Give the examples of usages of various CQL commands. 

SOLUTION 

• Create Table Command: CREATE TABLE command creates a table in 

the current keyspace: 

CREATE (TABLE COLUMNFAMILY) <tablename> 

('<column-definition>', '<column-definition>')(WITH 

<option> AND <option>); 

Primary key is a column used to uniquely identify a row. Therefore, 

defining a primary key is compulsory while creating a table. A 

primary key is made of one or more columns of a table. 

Example: Create a table Productinfo in the keyspace lego, with primary key field 

Productid. 

Use lego; 

Create table Productinfo(Productid int primarykey, ProductType text); 

• Describe Tables Command: DESCRIBE TABLE Command displays 

all the tables in the current keyspace: 



DESCRIBE TABLE <TABLE NAME>; 

Example: Display the details of a table Productinfo: 

DESCRIBE TABLE Productinfo; 

• Alter Tables Command: 

 

ALTER TABLE Command ALTER (TABLE COLUMNFAMILY) 

<tablename> (ADD I DROP) <column name> 

• Cassandra CURD Operations: (CURD-Create, Update, Read and 

Delete data into tables) : 

• Insert Command: 

INSERT INTO <tablename> (<columnl name>, <column2name>....) VALUES 

(<valuel>, <value2>....) USING 

<option> 

• Update Command: 

 

UPDATE command updates data in a table. The following 

keywords are used while updating data in a table: 

Where - This clause is used to select the row to be 

updated. Set - Set the value using this keyword. 

Must- Includes all the columns composing the primary 

key. If a given row is unavailable, then UPDATE creates 

a new row. 

UPDATE <tablename> SET <column name>= <new value> 

<column name>= <value> .... WHERE <condition> 

• Select Command 

SELECT command reads the data from a table. The 

command can read a whole table, a single column, or a 

particular cell: 

SELECT <column name(s)> FROM <Table Name> 

To select all records: 



SELECT* FROM <Table Name> 

To select records that fulfils required condition: 

SELECT <columnl, column2,..> FROM <Table Name>where 

<Condition> 

• Delete Command 

DELETE command deletes data from a table: 

DELETE FROM <identifier> WHERE <condition>; Example: 

Delete row from a table where Product id is 31047: DELETE 

FROM Productinfo WHERE Productid = 31047; 

• Creating a Table with List 

 

CREATE Table command is used for creating a table with a list. 

The following query creates a table with two columns, one is the 

primary key and the other has multiple items (List): 

CREATE TABLE data (<column name>, <data type>PRIMARY KEY, 

<column name list<data type>); 

Example : Create a sample table Contactlnfo with three columns: Sno, name 

and Emailld. To store multiple Email Ids, use a list: 

create table Contactinfo (Sno int Primary key,Name text, emailid list 

<text>); 

•  

• Update Command for updating Data 

into a List UPDATE command also 

updates data into a list: 

UPDATE <table Name> SET <New data> where 

<condition>. 

Example : Add one more email Id to the emailld list in Contactlnfo table : 

UPDATE Contactinfo SET emailid = emailid + ['preeti@ymail.com'] where SNo=l. 

 

 

 



 

 

 

 
Syllabus to Discuss 

  

MODULE 4 

MapReduce, Hive and Pig 

 
 

 

MapReduce, Hive and Pig: Introduction, MapReduce Map Tasks, Reduce Tasks and 

MapReduce Execution, Composing MapReduce for Calculations and Algorithms, 

Hive, HiveQL, Pig. 

 

INTRODUCTION 
 

The data processing layer is the application support layer, while the application 

layer is the data consumption layer in Big-Data architecture design, when using 

HDFS, the Big Data processing layer includes the API’s of Programs such as 

MapReduce and Spark. 

• The application support layer includes HBase which creates column-family 

data store using other formats such as key-value pairs or JSON file. 

• HBase stores and processes the columnar data after translating into 

MapReduce tasks to run in HDFS. 

• The support layer also includes Hive which creates SQL-like tables. Hive 

stores and processes table data after translating it into MapReduce tasks to run 

in HDFS. 

• Hive creates SQL-like tables in Hive shell. Hive uses HiveQL processes 

queries, ad hoc (unstructured) queries, aggregation functions  and summarizing 

functions, such as functions to compute maximum, minimum, average of 

selected or grouped datasets. HiveQL is a restricted form of SQL. 

• The support layer also includes Pig. Pig is a data-flow language and an 

execution framework. 

• Pig enables the usage of relational algebra in HDFS. MapReduce is the 

processing framework and YARN is the resource managing framework. 

 
 



Figure 4.1 shows Big Data architecture design layers: (i) data storage, (ii) data 

processing and data consumption, (iii) support layer APis for MapReduce, Hive and 

Pig running on top of the HDFS Data Store, and (v) application tasks. Pig is a 

dataflow language, which means that it defines a data stream and a series of 

transformations. 

 

The smallest unit of data that can be stored or retrieved from the disk is a block. 

HDFS deals with the data stored in blocks. 

The Hadoop application is responsible for distributing the data blocks across 

multiple nodes. The tasks, therefore, first convert into map and reduce tasks. 

This requirement arises because the mapping of stored values is very important. 

The number of map tasks in an application is handled by the number of blocks of 

input files. 

Reduce task uses those values for further processing such as counting, sorting or 

aggregating. 

Application sub-task assigned for processing needs only the outputs of reduce 

tasks. For example, a query needs the required response for a data store. 

 

 

 

 

MapReduce programming model refers to a programming paradigm for processing 

Big Data sets with a parallel and distributed environment using map and reduce 

tasks. 

 

YARN refers to provisioning of running and scheduling   parallel programs for 

map and reduce tasks and allocating parallel processing resources for computing 

sub- tasks running in parallel at the Hadoop for a user application. 

The YARN resources management enables large-scale data analytics using multiple 

machines (data nodes) in the HDFS cluster. 

Script refers to a small program (codes up to few thousand lines of code) in a 

language used for purposes such as query processing, text processing, or refers to 

a small code written in a dynamic high-level general-purpose language, such as 

Python or PERL. 

SQL-like scripting language means a language for writing script that processes 

queries similar to SQL. SQL lets us: (i) write structured queries for processing in 



DBMS, (ii) create and modify schema, and control the data access, (iii) Create 

client for sending query scripts, and create and manage server databases, and (iv) 

view, query and change (update, insert or append or delete)databases. 

A theorem known as CAP (Consistency, Availability and £,artitions) states that out 

of three properties, at least two must be present for the 

application/service/process. 

NoSQL relies upon another model known as the BASE model. This model has 

three principles: Basic availability (the availability of data even in the presence of 

multiple failures), Soft state (data consistencyis the developer's problem and should 

not be handled by the database). 

Eventual consistency (when no new changes occur on existing data, eventually all 

accesses to that data will return the last updated value). 

 
 

Data-architecture patterns refer to formats used in NoSQL DBs. The examples are 

Key-Value Data Stores, Object Data Stores, Column family Big Data Stores, 

Tabular Data Stores and Document Stores. 

Key-Value Data Store refers to a simplest way to implement a schema-less 

database. A string called key maps to values in a large data string or BLOB (basic 

large object).. 

 

Object Data Store refers to a repository which stores the (i) objects (such as files, 

images, documents, folders and business reports), (ii) system metadata which 

provides information such as filename, creation_date, last_modified, 

language_used, access_permissions, supported Query languages, and (iii) Custom 

metadata which provides information such as subject, category and sharing 

permission. 

Tabular Data Store refers to table, column-family or BigTable like Data Store. 
 

Column family Big Data store refers to storage in logical groups of column 

families. The storage may be similar to columns of sparse matrix. They use a pair 

of row and column keys to access the column fields. 

BigTable Data Store is a popular column-family based Data Store. 
 

Row key,column key and timestamp uniquely identify a value. Google BigTable, 

HBaseand Cassandra DBs use the BigTable Data Store model. 



Document Store means a NoSQL DB which stores hierarchical information in a 

single unit called document. Document stores data in nested hierarchies, for 

example in XML document object model, JSON formats data model or machine-

readable data as one BLOB. 

Tuple means an ordered list of elements. An n-tuple relates to set theory, a 

collection (sequence) of "n" elements. Tuples implement the records. 

Collection means a well-defined collection of distinct objects in a set, the objects of 

a set are the elements. A collection may be analogous to a table of RDBMS. A 

collection in a database also refers to storage of a number of documents. 

 
 

Aggregate refers to collection of data sets in the key value, column family or 

BigTable data stores which usually require sequential processing. 

Aggregation function refers to a function to find counts, sum, maximum, 

minimum, other statistical or mathematical function using a collection of datasets, 

such as column or column-family. 

 

Sequence refers to an enumerated collection of objects, (the repetitions can be 

there) which contain members similar to a set. Sequence length equals the number 

of elements (can also be infinite). Sequence should reflect an order which matters, 

unlike a set. 

Document refers to a container for the number of collections. The container can be 

a unit of storing data in a database, such as MongoDB. 

Natural join is where two tables join based on all common columns. Both thetables 

must have the same column name and the data type. 

 

 
MAPREDUCE MAP TASKS, REDUCE TASKS ANDMAPREDUCE EXECUTION 

 

Big Data Processing employs the Map Reduce Programming Model. A job 

means a Map Reduce Program. Each job consists of several smaller unit, called 

MapReduce Tasks. 

A software execution framework in MapReduce programming defines the parallel tasks. 

The Hadoop MapReduceimplementation uses Java framework. 
 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

The model defines two important tasks, namely Map and Reduce. 

Map takes input data set as pieces of data and maps them on various nodes for 

parallel processing. 

The reduce task, which takes the output from the maps as an input and combines 

those data pieces into a smaller set of data. A reduce task always run after the map 

task (s). 

Many real-world situations are expressible using this model. 

Inner join is the default natural join. It refers to two tables that join based on 

common columns mentioned using the ON clause. Inner Join returns all rows from 

both tables if the columns match. 

Node refers to a place for storing data, data block or read or write computations. 

Data center in a DB refers to a collection of related nodes. Many nodes form a 

data center or rack. 

Cluster refers to a collection of many nodes. 

Keyspace means a namespace to group multiple column families, especially one 

per partition. 

Indexing to a field means providing reference to a field in a document of 

collections that support the queries and operations using that index. A DB creates 

an index on the _id field of every collection. 

 
 

The input data is in the form of an HDFS file. The output of the task also gets 

stored in the HDFS. 

The compute nodes and the storage nodes are the same at a cluster, that is, the 

MapReduce program and the HDFS are running on the same set of nodes. 

. 

 



 

 

 

Figure 4.3 shows MapReduce process when a client submits a job, and the 

succeeding actions by the JobTracker andTaskTracker. 

JobTracker and Task Tracker MapReduce consists of a single  master JobTracker 

and one slave TaskTracker per cluster node. 

The master is responsible for scheduling the component tasks in a job onto the 

slaves, monitoring them and re-executing the failed tasks. The slaves execute the 

tasks as directed by the master. 

 
 

The data for a MapReduce task is initially at input files. The input files typically 

reside in the HDFS. The files may be line-based log files, binary format file, multi- 

line input records, or something else entirely different. 

The MapReduce framework operates entirely on key, value-pairs.  The 

framework views the input to the task as a set of (key, value)pairs and produces a 

set of (key, value) pairs as the output of the task, possiblyof different types. 

 
Map-Tasks 

Map task means a task that implements a map(), which runs user application 

codes for each key-value pair (kl, vl). Key kl is a set of keys. Key kl maps to 

group of data values (Section 3.3.1). Values vl are a large string which is read 

from the input file(s). 

The output of map() would be zero (when no values are found) or intermediate 

key-value pairs (k2, v2). The value v2 is the information for the transformation 

operation at the reduce task using aggregation or other reducing functions. 

Reduce task refers to a task which takes the output v2 from the map as an input 

and combines those data pieces into a smaller set of data using a combiner. The 

reduce task is always performed after the map task. 

The Mapper performs a function on individual values in a dataset irrespective of 

the data size of the input. That means that the Mapper works on a single data set. 

Figure 4.4 shows logical view of functioning of map(). 

 

 

 



Hadoop Java API includes   Mapper class. An abstract function map() is 

present in the Mapper class. Any specific Mapper implementation should   be a 

subclass of this class and overrides the abstract function, map (). 

The Sample Code for Mapper Class 
 

public clase SampleMapper extends Mapper<kl, Vl, k2, v2> 
 

{ 
 

void  map  (kl  key,   Vl  value, Context context) throwe

 IOException, InterruptedException 

{..} 

 
Individual Mappers do not communicate with each other. 

Number of Maps The number of maps depends on the size of the input files, i.e., 

the total number of blocks of the input files. 

If the input files are of 1TB in size and the block size is 128 MB, there will be 8192 

maps. The number of map task Nmap can be explicitly set by using 

setNumMapTasks(int). Suggested numberis nearly 10-100 maps per node. Nmap can 

be set even higher. 

 
Key-Value 

Pair 

Each phase (Map phase and Reduce phase) of MapReduce has key-value pairs as 

input and output. Data should be first converted into key-value pairs before it 

ispassed to the Mapper, as the Mapper only understands key-value pairs of data. 

Key-value pairs in Hadoop MapReduce are generated as follows: 

InputSplit - Defines a logical representation of data and presents a Split data for 

processing at individual map(). 

RecordReader - Communicates with the InputSplit and converts the Split into 
 
 

records which are in the form of key-value pairs in a format suitable for readingby 

the Mapper. 

RecordReader uses TextlnputFormat by default for converting data into key-value 

pairs. 

RecordReader communicates with the InputSplit untilthe file is read. 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 shows the steps in MapReduce key-value pairing. 

Generation of a key-value pair in MapReduce depends on the dataset and the 

required output. Also, the functions use the key-value pairs at four places: map() 

input, map() output, reduce() input and reduce() output. 

 

Grouping by Key 

When a map task completes, Shuffle process aggregates (combines) all the 

Mapper outputs by grouping the key-values of the Mapper output, and the 

value v2 append in a list of values. A "Group By" operation on intermediate keys 

creates v2. 

Shuffle and Sorting Phase 
 

All pairs with the same group key (k2) collect and group together, creatingone 

group for each key. 

 
 

Shuffle output format will be a List of <k2, List (v2)>. Thus, a different subset of 

the intermediate key space assigns to each reduce node. 

These subsets of the intermediate keys (known as "partitions") are inputs to the 

reduce tasks. 

Each reduce task is responsible for reducing the values associated with partitions. 

HDFS sorts the partitions on a single node automatically before they input to the 

Reducer. 

Partitioning 
 

• The Partitioner does the partitioning. The partitions are the semi-

mappers in MapReduce. 



• Partitioner is an optional class. MapReduce driver class can specify the 

Partitioner. 

• A partition processes the output of map tasks before submitting it to 

Reducer tasks. 

• Partitioner function executes on each machine that performs a map task. 

• Partitioner is an optimization in MapReduce that allows local partitioning 

before reduce-task phase. 

• The same codes implement the Partitioner, Combiner as well as reduce() 

functions. 

• Functions forPartitioner and sorting functions are at the mapping node. 

• The main function of a Partitioner is to split the map output records with 

the same key. 

 

Combiners 
 

Combiners are semi-reducers in MapReduce. Combiner is an optional class. 

MapReduce driver class can specify the combiner. 

The combiner() executes on each machine that performs a map task. Combiners 

optimize MapReduce task that locally aggregates before the shuffle and sort phase. 

 
 

The same codes implement both the combiner and the reduce functions, combiner() 

on map node and reducer() on reducer node. 

The main function of a Combiner is to consolidate the map output records with the 

same key. 

The output (key-value collection) of the combiner transfers over the network to 

the Reducer task as input. 

This limits the volume of data transfer between map and reduce tasks, and thus 

reduces the cost of data transfer across the network. Combiners use grouping by key 

for carrying out this function. 

The combiner works as follows: 
 

 It does not have its own interface and it must implement the interface at reduce(). 

 It operates on each map output key. It must have the same input 

andoutput key-value types as the Reducer class. 

 It can produce summary information from a large dataset because 

itreplaces the original Map output with fewer records or smaller records. 



 
Reduced Tasks 

 

Java API at Hadoop includes Reducer class. An abstract function, reduce() is in 

the Reducer. 

 Any specific Reducer implementation should be subclass of this class and 

override the abstract reduce(). 

 Reduce task implements reduce() that takes the Mapper output (which shuffles 

and sorts), which is grouped by key-values (k2, v2) and applies it in parallel to 

each group. 

 Intermediate pairs are at input of each Reducer in order after sorting using the 

key. 

 

 

 Reduce function iterates over the list of values associated with a key and 

produces outputs such as aggregations and statistics. 

 The reduce function sends output zero or another set of key-value pairs (k3, 

v3) to the final the output file. Reduce: {(k2, list (v2) -> list (k3, v3)} 

 

 

 

 
Sample code for Reducer Class 

 

public class ExarrpleReducer extends Reducer<k2, v2, k3, v3> 
 

void reduce (k2 key, Iterable<V2> values, Context context)

 throws IOBxception, InterruptedBxception 

{ ... } 
 

Details of Map Reduce processing Steps. 

 
 

 

 

Execution of MapReduce job does not consider how the distributed processing 

implements. Rather, the execution involves the formatting (transforming) of data 

at each step 

Figure 4.6 shows the execution steps, data flow, splitting, partitioning and sorting 

on a map node and reducer on reducer node. 

 



Copying with Node Failure 
 

The primary way using which Hadoop achieves fault tolerance is through restarting 

the tasks. 

 Each task nodes (TaskTracker) regularly communicates with the master node, 

JobTracker. If a TaskTracker fails to communicate with the JobTracker for a 

pre-defined period (by default, it is set to 10 minutes), a task node failure by 

the JobTracker is assumed. 

 
 The JobTracker knows which map and reduce tasks were assigned to each 

TaskTracker. 

 If the job is currently in the mapping phase, then another TaskTracker will be 

assigned to re-execute all map tasks previously run by the failed TaskTracker. 

 If the job is in the reducing phase, then another TaskTracker will re-execute 

all reduce tasks that were in progress on the failed TaskTracker. 

 Once reduce tasks are completed, the output writes back to the HDFS. Thus, 

ifa TaskTracker has already completed nine out of ten reduce tasks assigned to 

it, only the tenth task must execute at a different node. 

The failure of JobTracker (if only one master node) can bring the entire process 

down; Master handles other failures, and the MapReduce job eventually completes. 

When the Master compute-node at which the JobTracker is executing fails, then the 

entire 

 
 

MapReduce job must restart. Following points summarize the coping mechanism 

with distinct Node Failures: 

 Map TaskTracker failure: 

• Map tasks completed or in-progress at TaskTracker, are reset to idle on failure 

• Reduce TaskTracker gets a notice when a task is rescheduled on another 

TaskTracker 

 Reduce TaskTracker failure: 

• Only in-progress tasks are reset to idle 

 Master JobTracker failure: 

• Map-Reduce task aborts and notifies the client (in case of one master node). 

 
 



COMPOSING MAPREDUCE FOR CALCULATIONS ANDALGORITHMS 

MapReduce program composition in counting and summing, algorithms for 

relational algebraic operations, projections, unions, intersections, natural joins, 

grouping and aggregation, matrix multiplicationand other computations. 

Composing Map-Reduce for Calculations 

The calculations for various operations compose are: 
 

Counting and Summing 
 

• The number of alerts or messages generated during a specific maintenance 

activity of vehicles need counting for a month. 

• From Figure 4.8 showed the pseudocode using emit() in the map() of Mapper 

class. Mapper emits 1 for each message generated. 

• The reducer goes through thelist of ls and sums them. Counting is used in 

the data querying application. 

 
 

• For example, count of messages generated, word count in a file, number of 

cars sold, and analysis of the logs, such as number of tweets per month. 

Application is alsoin business analytics field. 

Sorting 
 

• From figure 4.6 illustrated MapReduce execution steps, i.e., dataflow, 

splitting, partitioning and sorting on a map node and reduce on a reducer 

node. 

• Mappers just emit all items as values associated with the sorting keys 

which assemble as a function of items. 

• Reducers combine all emitted parts into a final list. 

 

Finding Distinct Values (Counting unique values) 
 

Applications such as web log analysis need counting of unique users. 
 

Evaluation is performed for the totalnumber of unique values in each field for each 

set of records that belongs to the same group. 

Two solutions are possible: 
 

 The Mapper emits the dummy counters for each pair of field and groupld,and the 

Reducer calculates the total number of occurrences for each suchpair. 



 The Mapper emits the values and groupld, and the Reducer excludes the 

duplicates from the list of groups for each value and increments the counter 

for each group. 

 The final step is to sum all the counters emitted at the Reducer. This requires 

only one MapReduce job but the process is not scalable, and hence has 

limited applicability in large data sets. 

Collating 
 

 Collating is a way to collect all items which have the same value of function 

in one document or file, or a way to process items with the same value of the 

function together. 

 

 

 Examples of applications are producing inverted indexes and extract, 

transform and load operations. 

 Mapper computes a given function for each item, produces value of the 

function as a key, and the item itself as a value. 

 Reducer then obtains all item values using group-by function, processes or 

saves them into a list and outputs to the application task or saves them. 

Filtering or Parsing 
 

 Filtering or parsing collects only those items which satisfy some 

condition or transform each item into some other representation. 

 Filtering/parsing include tasks such as text parsing, value extraction and 

conversion from one format to another. 

 Examples of applications of filtering arefound in data validation, log analysis 

and querying of datasets. 

 Mapper takes items one by one and accepts only those items which satisfy 

the conditions and emit the accepted items or their transformed versions. 

 Reducer obtains all the emitted items, saves them into a list and outputs to 

the application. 

Distributed Tasks Execution 
 

 Large computations divide into multiple partitions and combine the results 

from all partitions for the final result. 

 Examples of distributed running of tasks are physical and engineering 

simulations, numerical analysis and performance testing. 

 Mapper takes a specification as input data, performs corresponding 

computations and emits results. Reducer combines all emitted parts into the 

final result. 



Graph Processing using Iterative Message Passing 
 

 Graph is a network of entities and relationships between them. A node 

corresponds to an entity. An edge joining two nodes corresponds to a 

relationship. 

 

 

 Path traversal method processes a graph. Traversal from one node to the next 

generates a result which passes as a message to the next traversal between the 

two nodes. Cyclic path traversal uses iterative message passing. 

 A set of nodes stores the data and codes at a network. Each node contains a 

listof neighboring node IDs. MapReduce jobs execute iteratively. Each node 

in an iteration sends messages to its neighbors. 

 Each neighbor updates its state based on the received messages. Iterations 

terminate on some conditions, such as completion of fixed maximal number of 

iterations or specified time to live or negligible changes in states between two 

consecutive iterations. 

 Mapper emits the messages for each node using the ID of the adjacent node as 

a key. All messages thus group by the incoming node. Reducer computes the 

stateagain and rewrites a node new state. 

 

 

 

 
Cross Correlation 

 

Cross-correlation involves calculation using number of tuples where the items co-

occur in a set of tuples of items. If the total number of items is N, then the total 

number of values= N x N. Cross correlation is used in text analytics. (Assume that 

items are words and tuples are sentences). Another application is in market-analysis 

(for example, to enumerate, the customers whobuy item x tend to also buy y). 

If N x N is a small number, such that the matrix can fit in the memory of a single 

machine, then implementation is straightforward. 

Two solutions for finding cross correlations are: 
 

 The Mapper emits all pairs and dummy counters, and the Reducer sums these 

counters. 

 The benefit from using combiners is little, as it is likely that all pairs are distinct. 
 

 

The accumulation does not use in-memory computations as N is very large. 



 The Mapper groups the data by the first item in each pair and maintains 

an associative array ("stripe") where counters for all adjacent items 

accumulate. 

 The Reducer receives all stripes for the leading item, mergesthem and emits 

the same result as in the pairs approach. 

The grouping: 
 

 Generates fewer intermediate keys. Hence, the framework has less sortingtodo. 

 Greatly benefits from the use of combiners. 

 In-memory accumulation possible. 

 Enables complex implementations. 

 Results in general, faster computations using stripes than "pairs". 

 

 

 

 
Matrix-Vector Multiplication by MapReduce 

Numbers of applications need multiplication of n x n matrix A with vector B of dimension 

n. Each element of the product is the element of vector C of dimension 

n. The elements of C calculate by relation, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm for using MapReduce: The Mapper operates on A and emits 

row-wise multiplication of each matrix element and vector element (aij x bj 'V i). 

The Reducer executes sum() for summing all values associated with each i and 

emits the element ci. Application of the algorithm is found in linear 

transformation. 



Relational – Algebra 

Operations Selection 

Consider the attributenames (ACVM_ID, Date, chocolate_flavour, 

daily_sales). Consider relation 

R  =  {(524,  12122017, KitKat,  82), (524,  12122017, Oreo,  72), (525 

2122017, KitKat, 82), (525, 12122017, Oreo, 72), (526, 12122017, KitKat, 

82), (526, 12122017, Oreo, 72)}. 

Selection ACVM_ID <= 525 (R) selects the subset R= {(524, 12122017, 

KitKat, 82), (524, 12122017, Oreo, 72), (525, 12122017, KitKat, 82), (525, 

12122017, Oreo, 72)}. 

 

Selection chocolate_flavour= Oreo selects the subset {(524, 12122017, Oreo, 

72), (525, 12122017, Oreo, 72), (526, 12122017, Oreo, 72)}. 

The Mapper calls test() for each tuple in a row. When test satisfies the 

selection criterion then emits the tuple. 

The Reducer transfers the received input tuple as the output. 
 
 

 

Projection 

Consider attribute names (ACVM_ID, Date, chocolate_flavour, daily_sales). 

Consider relation R = {(524, 12122017, KitKat, 82), (524, 12122017, Oreo, 

72)}. Projection II ACVM_m (R) selects the subset {(524)}. 

Projection, II chocolate_flavour, o.s* daily_sales selects the subset {(KitKat, 

0.5x82), (Oreo, 0.5 X 72)} 

The Mapper calls test() for each tuple in a row. When the test satisfies, the predicate 

then emits the tuple (same as in selection). 

 
The Reducer transfers the received input tuples after eliminating the possible 

duplicates. Such operations are used in analytics 

 

Union 

Consider, 

Rl = {(524, 12122017, KitKat, 82), (524, 12122017, Oreo, 72)} 

R2 = {(525, 12122017, KitKat, 82), (525, 12122017, Oreo, 72)} and 



R3 = {(526, 12122017, KitKat, 82), (526, 12122017, Oreo, 72)} 

Result of Union operation between Rl and R3 is: 

Rl U R3 = {(524, 12122017, KitKat, 82), (524, 12122017, Oreo, 72), (526, 12122017, 

KitKat, 82), (526, 12122017, Oreo, 72)} 

The Mapper executes all tuples of two sets for union and emits all the 

resultant tuples. 

The Reducer class object transfers the received input tuples after eliminating the 

possible duplicates. 

 
Intersection 

 
 

Consider, Rl = {(524, 12122017, Oreo, 72)} 

R2 = {(525, 12122017, KitKat, 82)} 

and R3 = {(526, 12122017, KitKat, 82), (526, 12122017, Oreo, 72)} 

Result of Intersection operation between Rl and R3 

are Rl n R3 = {(12122011, Oreo)} 

The Mapper executes all tuples of two sets for intersection and emits all the 

resultant tuples. 

The Reducer transfers only tuples that occurred twice. This is possible only when 

tuple includes primary key and can occur once in a set. Thus, both the sets contain 

this tuple. 

 

Difference 
 

Consider: 
 

Rl = {(12122017, KitKat, 82), (12122017, Oreo, 72)} and 
 

R3 = {(12122017, KitKat, 82), (12122017, Oreo, 25)} 
 

Difference means the tuple elements are not present in the second relation. 

Therefore, difference 

set_l is Rl - R3 = (12122017, Oreo, 72) 

and set_2 is R3 - Rl = (12122017, Oreo, 

25). 

The Mapper emits all the tuples and tag. A tag is the name of the set (say, set_l 

or set_2 to which a tuple belongs to). 



The Reducer transfers only tuples that belong to set_l. 

 

 
Symmetric Difference 

Symmetric difference (notation is A fl. B (or A e B)] is another relational entity. It 

means the set of elements in exactly one of the two relations A or B. R3 e Rl = 

 
 

(12122017, Oreo, 25). 

The Mapper emits all the tuples and tag. A tag is the name of the set (say, set_l 

or set_2 this tuple belongs to). 

The Reducer transfers only tuples that belong to neither set_l or set_2. 

 

Natural Join 

Consider two relations Rl and R2 for tuples a, band c. Natural Join computes for 

Rl (a, b) with R2 (b, c). Natural Join is R (a, b, c). 

Tuples b joins as one in a Natural Join. The Mapper emits the  key-value pair (b, 

(Rl, a)) for each tuple (a, b) of Rl, similarly emits (b, (R2, c)) for each tuple (b, c) of 

R2. 

The Mapper is mapping both with Key for b. The Reducer transfers all pairs 

consisting of one with first component Rl and the  other with first component R2, 

say (Rl, a) and (R2, c). 

The output from the key and value list is a sequence of key-value pairs. The key is of 

no use and is irrelevant. Each value is one of the triples (a, b, c) such that (Rl, a) and 

(R2, c) are present in the input list of values. 

Grouping and Aggregation by MapReduce 
 

Grouping means operation on the tuples by the value of some of their attributes after 

applying the aggregate function independently to each attribute. A Grouping 

operation denotes by <grouping attributes> j <function-list> (R). Aggregate 

functions are count(), sum(), avg(), min() and max(). 

Assume R= {(524, 12122017, KitKat,   82),   (524, 12122017,   Oreo,   72),   (525, 
 

12122017, KitKat, 82), (525, 12122017, Oreo, 72), (526, 12122017, KitKat, 82), 

(526, 12122017, Oreo, 72)}. 
 

Chocolate_flavour i count ACVM_ID, sum (daily_sales (chocolate_flavour)) 



 
 

will give the output (524, KitKat, sale_month), (525, KitKat, sale_month), ......and (524, 

Oreo, sale_month), (525, Oreo, sale_month), ..... for all ACVM_IDs. 
 

The Mapper finds the values from each tuple for grouping and   aggregates 

them. The Reducer receives the already grouped values in input for aggregation. 

Matrix Multiplication 
 

Consider matrices named A (i rows andj columns) and B( rows and k columns) to 

produce the matrix C;(i rows and k columns). Consider the elements of matrices A, 

B and C as follows: 

 

 

 

 

 

 

 

 

A.B = C; Each element evaluates as follow: 

 

 

 

 
First Row of C 

• C first column  element=  (a11b11+ a 12b21 +.... +  a lj'bj  1). 

• Second column element= (a11b12+ a12b22+ + a1j•bjz), 

• The kth column element= (a11b1k  + a 12bk2  +.... + a j1 bjk). 

 
 

Second row of C 
 

• C first column  element  = (a21b11+ a 22b21 +.... +  a j2 . bj  1). 

 
 

• Second column element = (a21b12+ a22b22+ + azj•bjz), 

• The kth column element= (a21b1k  + a 22b2k  +   + azj· bjk). 

The ith row of C 



• C first  column  element  =  (ailb11+  ai  2b21 +.... +  a ij.bj  1). 

• Second  column  element  = (ailb12+ a i2b22+.... + a ij.bj  2). 

• The kth column element= (ailb1k  + ai  2b2k +  .............. +aij.bjk). 

HIVE 
 

Hive was created by Facebook. Hive is a data warehousing tool and is also a data 

store on the top of Hadoop. An enterprise uses a data warehouse as large data 

repositories that are designed to enable the tracking, managing, and analyzing the 

data. 

 
 

Hive Characteristics 
 

• Has the capability to translate queries into MapReduce jobs. This makes Hive 

scalable, able to handle data warehouse applications, and therefore,  suitable 

for the analysis of static data of an extremely large size, where the fast 

response-time is not a criterion. 

• Supports web interfaces as well. Application APis as well as web-

browserclients, can access the Hive DB server. 

• Provides an SQL dialect (Hive Query Language, abbreviated HiveQL or 

HQL). 

Results of HiveQL Query and the data load in the tables which store at the 

Hadoop cluster at HDFS. 

Limitations of Hive is: 

• Not a full database. Main disadvantage is that Hive does not provide 

update, alter and deletion of records in the database. 

• Not developed for unstructured data. 

• Not designed for real-time queries. 

• Performs the partition always from the last column. 

 
HIVE ARCHITECTURE 

 
 

 

 

Components of Hive architecture are: 

• Hive Server (Thrift) - An optional service that allows a remote client to submit requests to 

Hive and retrieve results. Requests can use a variety of programming languages. 



• Thrift Server exposes a very simple client API toexecute HiveQL statements. 

• Hive CLI (Command Line Interface) - Popular interface to interact with 

Hive. Hive runs in local mode that uses local storage when running the CLI 

on a Hadoop cluster instead of HDFS. 

• Web Interface - Hive can be accessed using a web browser as well. This 

requires a HWI Server running on some designated code. The URL http:// 

hadoop:<port no.> / hwi command can be used to access Hive through the 

web. 

• Metastore - It is the system catalog. All other components of Hive interact 

with the Metastore. It stores the schema or metadata of tables, databases, 

columns in a table, their data types and HDFS mapping. 

• Hive Driver - It manages the life cycle of a HiveQL statement during 

compilation, optimization and execution. 

 
Comparison with RDBMS 

 
Hive is a DB system which defines databases and tables. Hive analyzes 

structured data in DB. Hive has certain differences with RDBMS. 
 

Characteristics Hive RDBMS 

Record level queries 
No Update and Delete 

Insert, Update and Delete 

Transaction support No Yes 

Latency Minutes or more In fractions of a second 

Data size Petabytes Terabytes 

Data per query Petabytes Gigabytes 

 
 

Query language HiveQL SQL 

Support JDBC/ODBC Limited Full 

Hive Data Types and File Formats 

Hive defines various primitive, complex, string, date/time, collection data typesand 

file formats for handling and storing different data formats. The following Table 

gives primitive, string, date/time and complex Hive data types and their 

descriptions. 

 

Data TypeName 
 

Description 



TINYINT 1 byte signed integer. Postfix letter is Y. 

SMALLINT 2 byte signed integer. Postfix letter is S. 

INT 4 byte signed integer 

BIGINT 8 byte signed integer. Postfix letter is L. 

FLOAT 4 byte single-precision floating-point number 

DOUBLE 8 byte double-precision floating-point number 

BOOLEAN True or False 

 
TIMESTAMP 

UNIX timestamp with optional nanosecond 

precision. It supports 0ava .sql.Timestamp format 

"YYYY-MM-DD HH:MM:SS.fffffffff' 

DATE YYYY-MM-DD format 

VARCHAR 1  to 65355 bytes. Use single quotes('') or 

double quotes("") 

 

 

CHAR 255 bytes 

 
DECIMAL 

Used for representing immutable arbitrary 

precision. DECIMAL (precision,scale) format 

 

The following Table gives Hive three Collection data types and their 

descriptions. 

 

File 

Format 

 
Description 

 
Text file 

The default file format, and a line represents a record. 

The delimiting characters separate the lines. Text file 

examples are CSV, TSV,JSON and XML(Section 3.3.2). 

Sequenti 

alfile 

 

Flat file which stores binary key-value pairs, and supports 

compression. 

RCFile Record Columnar file (Section 3.3.3.3). 

 ORC stands for Optimized Row Columnar which means 



ORCFILE it can store data in an optimized way than in the other file 

formats (Section 3.3.3.4). 

 
HIVE Data Model 

Name Description 

Database Namespace for tables 

 

Tables 

Similar to tables in RDBMS Support filter, projection, join and 

union operationsThe table data stores in a directory in HDFS 

 

 

Partitions Table can have one or more partition keys that tell how the 

data stores 

 
Buckets 

Data in each partition further divides into buckets based on hash 

of a columnin the table.Stored as a file in the partition directory. 

 

 

Get Metadata: Compiler sends metadata request to Metastore (of any database, 

such as MySQL). 

Send Metadata: Metastore sends metadata as a response to compiler. 

Send Plan: Compiler checks the requirement and resends the plan to driver. The 

parsing and compiling of the query is complete at this place. 

Execute Plan: Driver sends the execute plan to execution engine. 

Execute Job: Internally, the process of execution job is a MapReduce job. The 

execution engine sends the job to JobTracker, which is in Name node and it 

assigns this job to TaskTracker, which is in Data node. Then , the query executes 

the job. 

Metadata Operations: Meanwhile the execution engine can execute the 

metadata operations with Metastore. 

Fetch Result: Execution engine receives the results from Data nodes. 

Send Results: Execution engine sends the result to Dr iver. 

Send Results: Driver sends the results to Hive Interfaces. 

 



Hive Built-in Functions 

Return 

Type 

Syntax Description 

BIGINT round(doublea) Returns the rounded BIGINT (8 

Byte integer) value of the 8 Byte 

double- 

precision floating point number a 

 
BIGINT 

floor(doublea) Returns the maximum BIGINT value 

that is equal to or less thanthe double. 

 

 

 
BIGINT 

 
ceil(double a) 

Returns the minimum BIGINT value 

that is equal to or greater than the 

double. 

 
double rand(), rand(int seed) Returns a random number (double) that 

distributes uniformly from O to 1 and 

that changes in each row. Integer seed 

ensuredthat random number sequence 

is deterministic. 

 
string 

concate(string strl, 

string str2, ...) 

 
Returns the string   resulting

 from concatenating strl with 

str2, 

..... 

 
string 

substr(string str, int 

start) 

Returns the substring of str starting 

from a start position till the end of 

string str. 

 
string 

substr(string str, int 

start,int length) 

 

Returns the substring of str starting 

from the start position with the given 

length. 

 
string 

upper(string str), 

ucase (string str) 

 
Returns the string resulting

 from converting all 

characters ofstr to upper 

case. 

 lower(string str),  
Returns the string resulting from 



string 
lcase(stringstr) converting all characters ofstr to lower 

case. 

 
string 

trim(stringstr) Returns the string resulting from 

trimming spaces from both ends. trim 

('12A34 56') returns '12A3456' 

 

 

 

 
string 

ltrim(string str); 

rtrim(stringstr) 

Returns the string resulting from 

trimming spaces (only one end, left or 

right hand side or right-handside 

spaces trimmed). 

ltrim('12A34 56') returns '12A3456' 

and rtrim(' 12A34 56 ')returns 

'12A3456'. 

 
string 

rtrim(stringstr) Returns the string resulting from 

trimming spaces from the end (right 

hand side) of str. 

 
 

int year(string 

date) 
Returns the year part of a date or a timestamp string. 

int 
month(strin 

gdate) 

 

Returns the month part of a date or a timestamp 

string . 

int 
day(string 

date) 

 

Returns the day part of a date or a timestamp string. 

 

HIVEQL 
 

• Hive Query Language (abbreviated HiveQL) is for querying the large 

datasets which reside in the HDFS environment. 

• HiveQL script commands enable data definition, data manipulation and 

query processing. 

• HiveQL supports a large base of SQL users who are acquainted with 

SQL to extract information from data warehouses. 
 

 
HiveQL 

HiveQL is similar to SQL for querying on schema 



Process 

Engine 

information at the Metastore. It is one of the replacements 

of traditional approach for MapReduce program . Instead 

of writing MapReduce program in Java, we can write a 

query for MapReduce job and 

process it. 

 
Execution 

Engine 

The bridge between HiveQL process Engine and 

MapReduce is Hive Execution Engine. Execution engine 

processes the query and generates results same as 

 MapReduce results. It uses the flavor of Ma pReduce. 

 

 

 

 
HiveQL Data Definition Language (DDL) 

HiveQL database commands for data definition for DBs and Tables are CREATE 

DATABASE, SHOW DATABASE {list of all DBs), CREATE SCHEMA, 

CREATE TABLE. 

Following are HiveQL commands which create a table: 
 

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [<database 

name>.] 
 

<table name> 
 

[(<column name> <data type> [COMMENT <column comment>], ...)] [COMMENT 

<table comment>] 

[ROW FORMAT <row format>][STORED AS <file format>] 

 

 

• A command is 
 

CREATE DATABASEISCHEMA [IF NOT EXISTS] <database name>; 
 

IF NOT EXISTS is an optional clause. The clause notifies the user that a 

database with the same name already exists. SCHEMA can be also created in place 

of DATABASE using this command 

A command is written to get the list of all existing databases. SHOW 

DATABASES; 



A command is written to delete an existing database. 
 

DROP (DATABASEISCHEMA) [RESTRICT I CASCADE]; [IF EXISTS] 

<database name> 
 

HiveQL Data Manipulation Language (DML) 

HiveQL commands for data manipulation are USE <database name>, 

DROP DATABASE, DROP SCHEMA, ALTER TABLE, DROP TABLE, and 

LOAD DATA. 

The following is a command for inserting (loading) data into the Hive DBs. 

LOAD DATA [LOCAL] INPATH '<file path>' [OVERWRITE] INTO 

TABLE <table name> [PARTITION (partcoll=vall,partcol2=val2 ...)] 

 

LOCAL is an identifier to specify the local path. It is optional. OVERWRITE 

is optional to overwrite the data in the table. PARTITION is optional. vall is value 

assigned to partition column 1 (partcoll) and val2 is value assigned to partition 

column 2 (partcol2). 

HiveQL For Querying the Data 

Partitioning and storing are the requirements. A data warehouse should have a 
 

large number of partitions where the tables, files and databases store. Querying 

then requires sorting, aggregating and joining functions. 

Querying the data is to SELECT a specific entity satisfying a condition, having 
 

presence of an entity or selecting specific entity using GroupBy . 

SELECT [ALL I DISTINCT] <select expression>, <selectexpression>, ... 

FROM <table name> 

[WHERE <where  condition>]  [GROUP  BY  <column  List>]  [HAVING 

<having condition>] 
 

[CLUSTER BY <column List>I [DISTRIBUTE BY <column List>] [SORT 

BY <column List>]] 

[LIMIT number]; 

 

 
PIG 



• It is an abstract over MapReduce 

• It is an execution framework for parallel processing 

• Reduces the complexities of writing a MapReduce program 

• Is a high-level dataflow language. Dataflow language means that a Pig 

operation node takes the inputs and generates the output for the next node 

• Is mostly used in HDFS environment 

• Performs data manipulation operations at files at data nodes in Hadoop. 

Applications of Apache Pig 

• Analyzing large datasets 

• Executing tasks involving adhoc processing 

• Processing large data sources such as web logs and streaming online data 

• Data processing for search platforms. Pig processes different types of data 

• Processing time sensitive data loads; data extracts and analyzes quickly. 

 
 
 

Differences between Pig and MapReduce 

Pig MapReduce 

A dataflow language A data processing paradigm 

High level language and flexible Low level language and rigid 

Performing Join, filter, sorting or 

ordering operations are quite 

simple 

Relatively difficult to perform 

Join, filter, sorting or ordering 

operations between datasets 

Programmer with a basic 

knowledge of SQL can work 

conveniently 

Complex Java implementations 

requireexposure to Java language 

Uses multi-query approach, 

therebyreducing the length of the 

codes significantly 

Require almost 20 times more the 

number of lines to perform the 

same task 

No   need   for   compilation for 

execution; operators convert 

internally into MapReduce jobs 

 
Long compilation process for Jobs 

Provides nested data types like 
No such data types 



tuples, bagsand maps 

Differences between Pig and SQL 

Pig SQL 

Pig Latin is a procedural language A declarative language 

Schema is optional, stores data without 

assigning a schema 

Schema is mandatory 

Nested relational data model Flat relational data model 

Provides limited opportunity for Query 

optimization 

More opportunity for 

query optimization 

Pig and Hive codes, both create MapReduce jobs when execute. Hive in some 

cases, operates on HDFS in a similar way Apache Pig does. 

 

 

 

Differences between Pig and Hive 

Pig Hive 

Originally created at Yahoo Originally created at 

Facebook 

Exploits Pig Latin language Exploits HiveQL 

 
Pig Latin is a dataflow language 

HiveQL is a

 query 

processinglanguage 

Pig Latin is a procedural language and it fits 

in pipelineparadigm 

 

HiveQL is a 

declarative language 

Handles structured, unstructured and semi- 

structureddata 

 

Mostly used for 

structured data 

 

 
Pig Architecture 

 

 

 

 



 

 

 

 

 

 

 
The three ways to execute scripts are: 

 

• Grunt Shell: An interactive shell of Pig that executes the scripts. 

• Script File: Pig commands written in a script file that execute at Pig Server. 

• Embedded Script: Create UDFs for the functions unavailable in Pig built• in 

operators. UDF can be in other programming languages. The UDFs can 

embed in Pig Latin Script file. 

 

Parser A parser handles Pig scripts after passing through Grunt or Pig Server. The 

Parser performs type checking and checks the script syntax. The output is a 

Directed Acyclic Graph (DAG). 

Acylic means only one set of inputs are simultaneously at a node, and only one set 

of output generates after node operations. 

DAG represents the Pig Latin statements and logical operators. Nodes represent 

the logical operators. Edges between sequentially traversed nodes represent the 

dataflows. 

Optimizer The DAG is submitted to the logical optimizer. The optimization 

activities, such as split, merge, transform and reorder operators execute in this 

phase. The optimization is an automatic feature. 

The optimizer reduces the amount of data in the pipeline at any instant of time, 

while processing the extracted data. It executes certain functions for carrying out 

this task, as explained as follows: 

PushUpFilter: If there are multiple conditions in the filter and the filter can be 

split, Pig splits the conditions and pushes up each condition separately. Selecting 

these conditions at an early stage helps in reducing the number of records 

remaining in the pipeline. 

PushDownf or EachFlatten: Applying flatten, which produces a cross product 

between a complex type such as a tuple, bag or other fields in the record, as late as 

possible in the plan. This keeps the number of records low in the pipeline. 



ColumnPruner: Omitts never used columns or the ones no longer needed, 

reducing the size of the record. This can be applied after each operator, so that the 

fields can be pruned as aggressively as possible. 

MapKeyPruner: Omitts never used map keys, reducing the size of the record. 
 

Limit Optimizer: If the limit operator is immediately applied after load or sort 

operator, Pig converts the load or sort into a limit-sensitive implementation, which 

does not require processing the whole dataset. Applying the limit earlier reduces 

the number of records. 

Compiler The compiler compiles after the optimization process. The optimized 

codes are a series of MapReduce jobs. 

Execution Engine Finally, the MapReduce jobs submit for execution to the 

engine. The MapReduce jobs execute and it outputs the final result. 

 

Apache- Pig Grunt Shell 

Main use of Grunt shell is for writing Pig Latin scripts. Any shell command 

invokes using sh and ls. Syntax of sh command is: 

grunt> sh shell command 

parameters Syntax of ls command: 

grunt> sh ls 

 

Pig Latin Data Model 

Pig Latin supports primitive data types which are atomic or scalar data 

types. Atomic data types are int, float, long, double, char[], byte []. 

The language also defines complex data types. Complex data  types are 

tuple, bag and map. 

Data types and examples 

Data type Description Example 

bag Collection of tuples {(1,1), (2,4)} 

tuple Ordered set of fields (1,1) 

map (data map) Set of key-value pairs [Number#l] 

int Signed 32-bit integer 10 

long Signed 64-bit integer lOL or 101 

float 32-bit floating point 22.7F or 22.7f 



double 64-bit floating point 3.4 or 3.4e2 or 3.4E2 

chararray Char [], Character array data analytics 

bytearray BLOB (Byte array) ffoo 

 

 

 
 

Pig Latin and Developing Pig Latin scripts 

Pig Latin enables developing the scripts for data analysis. A number of operators 

in Pig Latin help to develop their own functions for reading, writing and 

processing data. Pig Latin programs execute in the Pig run-time environment. 

Pig Latin 

• Basic constructs to process the data. 

 

• Include schemas and expressions. 

• End with a semicolon. 

• LOAD statement reads the data from file system, DUMP displays the 

resultand STORE stores the result. 

• Single line comments begin with - - and multiline begin with/* and end 

with*/ 

• Keywords (for example, LOAD, STORE, DUMP) are not case-sensitive. 

Function names, relations and paths are case-sensitive. 

 

 

 

 

 

 

 

 

 

 

 

 
Apache Pig Execution 

Pig Execution Modes Local Mode: All the data files install and run from a local 

host using the local file system. Local mode is mostly used for testing purpose. 



COMMAND: 
 

pig  -x

 loc

al MapReduce 

Mode: 

All the data files load or process that exists in the HDFS. A MapReduce job 

invokes in the back-end to perform a particular operation on the data that exists in 

the HDFS when a Pig Latin statement executes to process thedata. 

COMMAND: 
 

pig -x mapreduce or p i g 
 

Pig Latin Script Execution Modes 
 

• Interactive Mode - Using the Grunt shell. 

 

• Batch Mode - Writing the Pig Latin script in a single file with 

.pig extension. 

• Embedded Mode - Defining UDFs in programming languages such as 

Java,and using them in the script. 

Commands 

• To get the list of pig commands: pig-help; 

• To get the version of pig: pig -version. 

• To start the Grunt shell, write the command: pig 

LOAD Command The first step to a dataflow   is to specify the input. 
 

Load statement in Pig Latin loads the data from PigStorage. 
 

To load data from HBase: book load 'MyBook' using HBaseStorage(); 
 

For reading CSV file, PigStorage takes an argument which indicates which 

character to use as a separator. 

For example, 
 

book = LOAD 'PigDemo/Data/Input/myBook.csv' USING PigStorage (,); 
 



To specify the data-schema for loading: book = LOAD 'MyBook' AS (name, 

author, edition, publisher); 

Store Command Pig provides the store statement for writing the processed data 

after   the    processing    is    complete.    It    is   the    mirror    image    of the 

load statement in certain ways. 

By default, Pig stores data on HDFS in a tab-delimited file using PigStorage: 
 

STORE processed into '/PigDemo/Data/Output/Processed'; 
 

To store in HBaseStorage with a using clause: STORE processed into 

'processed' using HBaseStorage(); 

To store data as comma-separated text data, PigStorage takes an argument 

to indicate which character to use as a separator: STORE processed into 

'processed' using PigStorage(','); 

Dump Command Pig provides dump command to see the processed data on the 

screen. This is particularly useful during debugging and prototyping sessions. It 

can also be useful for quick adhoc jobs. 

 

The following command directs the output of the Pig script on the 

display screen: 

DUMP processed; 
 

Relational Operations 

The relational operations provided at Pig Latin operate on data. They transform 

data using sorting, grouping,joining, projecting and filtering. Followings are the 

basic relational operators: 

Foreach FOREACH gives a simple way to apply transformations based on 

columns. It is Pig's projection operator. 

 

 
 

Module 5 

Machine Learning Algorithms for Big Data 

Analytics 



• Introduction 

Artificial Intelligence (AI) refers to the science and engineering of making 

computers perform tasks, which normally require human intelligence. For example, 

tasks such as predicting future results, visual perception, speech recognition, decision 

making and natural language processing. 

Two concepts in AI, 'machine learning' and 'deep learning' provide powerful tools for 

advanced analytics and predictions. 

Machine Learning 

Machine Learning (ML) is a field of computer science based on AI which deals with 

learning from data in three phases, i.e. collect, analyze and predict. It does not rely on 

explicitly programmed instructions. 

An ML program learns the behavior of a process. The program uses data generated 

from various sources for training. Learning from the outcomes from common inputs 

improves future performance from previous outcomes. Learning applies in many fields 

of research and industry. Learning from study of data enables efficient and logical 

decisions for future actions. 

Deep Learning (DL) refers to structured learning (DSL) or hierarchical learning. DL 

methods are advanced methods, such as artificial neural networks (ANN) such as 

artificial neural networks (ANN) or neural nets, deep neural networks, deep belief 

networks and recurrent neural networks. Learning can be unsupervised, semi-

supervised or supervised. Applications of DL and ANN include computer vision, 

speech recognition, Natural Language Processing (NLP), audio recognition, social 

network filtering, machine translation, bioinformatics and drug design. DL methods 

give results comparable to and in some cases superior to human experts. 

 

 
 

• ESTIMATING THE RELATIONSHIPS, OUTLIERS, 

VARIANCES, PROBABILITY DISTRIBUTIONS AND 

CORRELATIONS 



Independent variables represent directly measurable characteristics. For example, 

year of sales figure or semester of study. Dependent variables represent the 

characteristics. For example, profit during successive years or grades awarded in 

successive semesters. Values of a dependent  variable depend  on the  value  of the 

independent Variable. 

Predictor variable is an independent variable, which computes a dependent variable 

using some equation, function or graph, and does a prediction. For example, predicts 

sales growth of a car model after five years from given inputdatasets for the sales, or 

predicts sentiments about higher sales of particular category of toys next year. 

Outcome variable represents the effect of manipulation(s) using a function, equation 

or experiment. For example, CGPA (Cumulative Grade Points Average) of the student 

or share of profit to each shareholder in a year using profit as the dependent variable. 

CGPA of a student computes from the grades awarded in the semesters for which 

student completes his/her studies. A company declares the share of profit to each 

shareholder in a year after subtracting requirements of money for future growth from 

the profit. 

Explanatory variable is an independent variable, which explains the behavior of the 

dependent variable, such as linearity coefficient, non-linear parameters or probabilistic 

distribution of profit-growth as a function of additional investment in successive years. 

Response variable is a dependent variable on which a study, experiment or 

computation focuses. For example, improvement in profits over the years from the 

investments made in successive years or improvement in class performance is 

measured from the extra teaching efforts on individual students of a class. 

Feature variable is a variable representing a characteristic. For example, apple 

feature red, pink, maroon, yellowish, yellowish green and green. Feature variables are 

generally represented by text characters. Numbers can also represent features. For 

example, red with 1, orange with 2, yellow with 3, yellowish green 4 and green 5. 



Categorical variable is a variable representing a category. For example, car, tractor 

and truck belong to the same category, i.e., a four-wheeler automobile. Categorical 

variables are generally represented by text characters. 

 

 
 

Relationships-Using Graphs, Scatter Plots and Charts 
 

A relationship between two or more quantitative dependent variables with respect to 

an independent variable can be well-depicted using graph, scatter plot or chart with 

data points, shown in distinct shapes. Conventionally, independent variables are on 

the x-axis, whereas the dependent variables on the y-axis in a graph. A line graph uses 

a line on an x-y axis to plot a continuous function. 

A scatter plot is a plot in which dots or distinct shapes represent values of the 

dependent variable at the multiple values of the independent variable Whether two 

variables are related to each other or not, can be derived from statistical analysis using 

scatter plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 5.1 Scatter plot for linear relationship between students opting for computer 

courses in years between 2000 and 2017 

A linear relationship can be positive or negative. A positive relationship implies if 

one 
 
 
 

variable increases in value, the other also increases in value. A negative relationship, on 

the other hand, implies when one increases in value, the other decreases in value. 

Perfect, strong or weak linearship categories depend upon the bonding between the two 

variables. 

A non-linear relationship is said to exist between two quantitative variables when a curve 

(y 

= a0 + a1.x + a2.x2 + •••) can be used to fit the data points. The fit should be with at 

least some reasonable degree of accuracy for the fitted parameters, a0, a1, a2 ••• 

Expression for y then generally predicts the values of one quantitative variable from the 

values of the other quantitative variable with considerably more accuracy than a 

straight line. 

Consider an example of non-linear relationship: The side of a square and its area are 

not 
 

 

Figure 5.2 scatter plot in case of a non-linear relationship between side of square and 

its area 

 

 
 

Estimating Relationship 
 

Estimating the relationships means finding a mathematical expression, which gives 

the value of the variable according to its relationship with other variables. For example, 



assume Ym = sales of a car model m in xth year of the start of manufacturing that 

model. 

Outliers 
 

Outliers are data points that are numerically far distant from the rest of the points in a 

dataset, are termed as outliers. Outliers show significant variations from the rest of the 

points. Identification of outliers is important to improve data quality or to detect an 

anomaly 

There are several reasons for the presence of outliers in relationships. Some of these are: 

• Anomalous situation 

• Presence of a previously unknown fact 

• Human error (errors due to data entry or data collection) 

• Participants intentionally reporting incorrect data (This is common in self• 

reported measures and measures that involve sensitive data which 

participant doesn't want to disclose) 

• Sampling error (when an unfitted sample is collected from population). 

Population means any group of data, which includes all the data of interest. For 

example, when analyzing 1000 students who gave an examination in a computer 

course, then the population is 1000. 100 games of chess will represent the population in 

analysis of 100 games of chess of a grandmaster. 

Sample means a subset of the population. Sample represents the population for 

uses, such as analysis and consists of randomly selected data. 

Variance 
 

Variance measures by the sum of squares of the difference in values of a variable 

with respect to the expected value. Variance can alternatively be a sum of squares of 

the difference with respect to value at an origin. Variance indicates how widely data 

points in a dataset vary. If data points vary greatly from the mean value in a dataset, the 

variance is large; otherwise, the variance is less. The variance is also a measure of 

dispersion with respect to the expected value. 

 



 
 

A high variance indicates that the data in the dataset is very much spread out over a 

large area (random dataset), whereas a low variance indicates that the data is very 

similar in nature. 

No variance is sometimes hard to understand in real datasets 

 

Standard Deviation and Standard Error Estimates 

Standard Deviation With the help of variance, one can find out the standard 

deviation. Standard deviation, denoted by s, is the square root of the variance. The s 

says, "On an average how far do the data points fall from the mean or expected 

outcome?" Though the interpretation is the same as variance buts is squared rooted, 

therefore, less susceptible to the presence of outliers. The formulae for the population 

and the sample standard deviations are as follows: 

 

 

 

 

 

 

where N is number of data points in population, S is number in the sample, m is 

expected in the population or average value of x, and x is expected x in the sample. 

Standard Error The standard error estimate is a measure of the accuracy of 

predictions from a relationship. Assume the linear relationship in a scatter plot of y 

(Figure 6.1). The scatter plot line, which fits, is defined as the line that minimizes the 

sum of squared deviations of prediction (also called the sum of squares error). The 

standard error of the estimate is closely related to this quantity and is defined below: 

 

 

where sest is the standard error in the estimate, y is an observed value, y¢ is a 

predicted value, and N is the number of values observed. The standard error estimate 



is a measure of the dispersion (or variability) in the predicted values from the 

expression for relationship. 

 

 
 

Probabilistic Distribution of Variables, Items or Entities 
 

Probability is the chance of observing a dependent variable value with respect to some 

independent variable. Suppose a Grandmaster in chess has won 22 out of 100   games, 

drawn 78 times, and lost none. Then, probability P of winning Pw is 0.22, P of drawn 

game P0 is 

0.78 and P of losing, PL = 0. The sum of the probabilities is normalized to 1, as only one 

of the three possibilities exist. 

Probability distribution is the distribution of P values as a function of all 

possible independent values, variables, situations, distances or variables. For 

example, if Pis given by a function P(x), then P varies as x changes. Variations 

in P(x) with x can be 

 

Figure 5.3 Probability distribution function as a function of x assuming 

normal distribution around x = 'i, and standard deviation = s 

The figure also shows the percentages of areas in five regions with respect to the total 

area under the curve for P(x). The variance for probability distribution represents how 

individual data points relate to each other within a dataset. 

 

 
 

variance is the average of the squared differences between each data value and the mean. 
 

Kernel Functions 

Kernel 

function is a function which is a central or key part of another function. For example, 



Gaussian kernel function is the key part of the probability distribution function. Figure 

5.3 shows the probability normal distribution, which is a Gaussian function based on the 

Gaussian kernel function. 
 

 

 
 

Moments 
 

 

 

Analysis of Variance 

An ANOVA test is a method which finds whether the fitted results are significant 

or not. This means that the test finds out (infer) whether to reject or accept the null 

hypothesis. Null hypothesis is a statistical test that means the hypothesis that "no 

significant difference exists between the specified populations difference is just due to 

sampling or experimental error. 

Consider two specified populations (datasets) consisting of yearly sales data of Tata 

Zest andJaguar Land Rover models. The statistical test is for proving that yearly sales of 

both the models, means increments and decrements of sales are related or not. Null 

hypothesis starts with the assumption that no significant relation exists in the two sets of 

data (population). 

The analysis (ANOVA) is for disproving or accepting the null hypothesis. The test 

also finds whether to accept another alternate hypothesis. The test finds that whether 

testing groups have any difference between them or not. 

F-test F-test requires two estimates of population variance- one 

based on variance between the samples and the other based on variance within the 

samples. These two estimates are then compared for F-test: 



where El(V) is an estimate of population variance between the two samples and E2(V) 

is an estimate of population variance within the two samples. Several different F-tables 

exist. Each one has a different level of significance. Thus, look up the numerator 

degrees of freedom and the denominator degrees of freedom to find the critical value. 

 

 
 

Correlation 

Correlation means analysis which lets us find the association or the absence of the 

relationship between two variables, x and y. Correlation gives the strength of the 

relationship between the model and the dependent variable on a convenient 0-100% 

scale. 

R-Square Risa measure of correlation between the predicted values y and the 

observed values of x. R-squared (R2 )      is a goodness-of-fit measure in linear• 

regression model. It is also known as the coefficient of determination. R2 is the square 

of R, the coefficient of multiple correlations, and includes additional independent 

(explanatory) variables in regression equation. 

Interpretation of R-squared The larger the R2 , the better the regression model fits the 

observations, i.e., the correlation is better. Theoretically, if a model shows 100% 

variance, then the fitted values are always equal to the observed values, and therefore, all 

the data points would fall on the fitted regression line 

Correlation Indicators of Linear Relationships 

Correlation is a statistical technique that measures and describes the 'strength' and 

'direction' of the relationship between two variables. 

Relationships and correlations enable training model on sample data using statistical or 

ML algorithms. Statistical correlation is measured by the coefficient of correlation. The 

most common correlation coefficient, called the Pearson product-moment correlation 



coefficient. It measures the strength of the linear association between variables. The 

correlation r between the two variables x and y is: 

where n is the number of observations in the sample, xi is the x value for observation 

i, x- is the sample mean of x,Yi is the y value for observation i, y- is the sample mean of 

y, sx is the sample standard deviation of x, and Sy is the sample standard deviation of y. 

 

 

 
 

 

 

 
 

 

Figure 5.4 Perfect and imperfect, linear positive and negative relationships, and 

the strength and direction of the relationship between variables 

 

 
 

• Regression Analysis 

Correlation and regression are two analyses based on multivariate distribution. A 

multivariate distribution means a distribution in multiple variables. 

Suppose a company wishes to plan the manufacturing of Jaguar cars for coming years. 

The company looks at sales data regressively, i.e., data of 

previous years' sales. Regressive analysis means estimating relationships between 

variables. Regression analysis is a set of statistical steps, which estimate the 

relationships among variables. Regression analysis may require many techniques for 

modeling and performing the analysis using multiple variables. The aim of the analysis 

is to find the relationships between a dependent variable and one or more independent, 

outcome, predictor or response variables. Regression analysis facilitates prediction of 

future values of dependent variables 

Non-linear regression equation is as follows: 

 

 



where number of terms on the right-hand side are 3 or 4. Linear regression means only 

the first two terms are considered. The following subsections describe regression 

analysis in detail. 

Simple Linear Regression 

Linear 

regression is a simple and widely used algorithm. It is a supervised ML algorithm for 

predictive analysis. It models a relationship between the independent predictor or 

explanatory, and the dependent  outcome or variable, y using a linearity equation. 

Simple linear regression is performed when the requirement is prediction of values of 

one variable, with given values of another variable. 

The purpose of regression analysis is to come up with an equation of a line that fits 

through a cluster of points with minimal amount of deviation from the line. The best-

fitting line is called the regression line. The deviation of the points from the line is called 

an 'error'. 

 

 

 
 

 

 
 

where b0 and b1 are the coefficients which minimize the errors. The coefficients 

values make the sum of the squared prediction errors as small as possible 

Multiple Regression 

A criterion variable can be predicted from one predictor variable in simple linear 

regression. 

The criterion can be predicted by two or more variables in multiple regressions. 

Multiple regressions are used when two or more independent factors are involved. 

These regressions are also widely used to make short- to mid-term predictions to assess 

which factors to include and which to exclude. Multiple regressions can be used to 

develop alternate models 



 

 
 

with different factors. More than one variable can be used as a predictor with multiple 

regressions. However, it is always suggested to use a few variables as predictors 

necessarily, to get a reasonably accurate forecast. The prediction takes the form: 

 

 

More than one variable can be used as a predictor with multiple regressions. However, 

it is always suggested to use a few variables as predictors necessarily, to get a 

reasonably accurate forecast. The prediction takes the form: 

Multiple regression analysis, often referred to simply as regression analysis, examines 

the effects of multiple independent variables on the value of a dependent variable or 

outcome. 

 

 
Modelling Possibilities using Regression. 

 

Regressions range from simple models to highly complex equations. Two 

primary uses for regression are forecasting and optimization. Consider the 

following examples: 

• Using linear analysis on sales data with monthly sales, a company could 

forecast sales for future months. 

• For the funds that a company has invested in marketing a particular 

brand, an analysis of whether the investment has given substantial returns 

or not can be made. 

• Suppose two promotion campaigns are running on TV and Radio in 

parallel. A linear regression can confine the individual as well as the 

combined impact of running these advertisements together. 

• An insurance company exploits a linear regression model to obtain a 

tentative premium table using predicted claims to Insured Declared 

Value 

ratio. 



 

• A financial company may be interested in minimizing its risk portfolio 

and hence want to understand the top five factors or reasons for default 

by a customer. 

• To predict the characteristics of child based on the characteristics  of their 

 
 
 

parents. 

• A company faces an employment discrimination matter in which a claim 

that women are being discriminated against in terms of salary is raised. 

• Predicting the prices of houses, considering the locality and builder 

characteristics in a locality of a particular city. 

• Finding relationships between the structure and the biological activity of 

compounds through their physical, chemical and physicochemical traits is 

most commonly performed with regression techniques. 

• To predict compounds with higher bioactivity within groups. 

 

 

6.3.2 Predictions using Regression Analysis 

Regression analysis is a powerful technique used for predicting the unknown value of 

a variable from the known value of another variable. Regression analysis is generally a 

statistical method to deal with the formulation of a mathematical model depicting the 

relationship amongst dependent and independent variables. The dependent variable is 

used for the purpose of prediction of the values. One or more variables whose values are 

hypothesized are called independent variables. The prediction for the dependent variable 

can be made by accurate selection of independent variables to estimate a dependent 

variable. 

Two steps for predicting the dependent variable: 

Estimation step: A function is hypothesized and the parameters of the function are 

estimated from the data collected on the dependent variable. 



Prediction step: The independent variable values are then input to the parameterized 

function to generate predictions for the dependent variable. 

K-Nearest-Neighbour Regression Analysis 

Consider the saying, 'a person is known by the company he/she keeps.' Can a 

prediction be made using neighbouring data points? K-Nearest Neighbours (KNN) 

analysis is an ML based technique using the concept, which uses a subset of K = 1, 2 or 

3 neighbours in place of a complete dataset. The subset is a training dataset. 

Assume that population (all data points of interest) consist of k-data points. A data 

point independent variable is xi, where i = 1 to k. K-Nearest Neighbours (KNN) is 

an algorithm, 

 

 
 

which is usually used for classifiers. However, it is useful for regression also. 

Predictions can use all k examples (global examples) or just K examples (K-neighbours 

with K = 1, 2 or 3). It predicts the unknown value Yp using predictor variable using the 

available values at the neighbours. The training dataset consists of available values of 

Yni at Xni with ni = 1 to K, where ni is the K-the neighbour, means just the local 

examples. 

A subset of training dataset restricts k to K-neighbours, where K = 1, 2 or 3. This 

means using local values near the predictor variable. K = 1 means the nearest 

neighbour data points. K = 2 means the next nearest neighbour data points (xi,YJ K 

= 3 means the next to next nearest neighbour data points (Xj,yi). 

 

 

 
 



 
 

 
 

Manhattan distance for three variables v = 3 (two independent variables and one 

dependent variable case) consists of three terms on the right-hand side in Equation. 

Comparison between  Euclidean  and  Manhattan  Distances 

Basically, Euclidean distance is the direct path distance between two data points in 

v• dimensional metric spaces. Manhattan distance is the staircase path distance between 

them. Staircase distance means to move to the next point, first move along one 

metric dimension (say, x axis) from the first point, and then move to the next along 

another dimension (say, y axis). 

When v = 2, Euclidean distance is the diagonal distance between the points on an x-y 

graph. 
 

 

 

 

when xi= x¢i then DH= O and when Xj not equal to x¢i then DH= 1. For 

example, Hamming distance DH= 1 between 10100111100 and 11100111100 because 

just one substitution is needed, change second bit from O to 1 at 10th place from the 

right to left positioned bits. 

 
 

Normalization Concept Normalization factor in p-norm form in a v• dimensional space is 

 
 

 
 

 
 

 

 

 



Here, xi is ith component of the vector X. The total number of components are Two- 

dimensional space v = 2, three-dimensional v = 3. The following example explains the 

meaning of distances, use of Euclidean and Manhattan distances, use distances for 

predictions, and the KNN regression analysis. 

• FINDING SIMILAR ITEMS, SIMILARITY OF SETS ANDCOLLABORATIVE 

FILTERING 

The following subsections describe methods of finding similar items using 

similarities, application of near-neighbour search, Jaccard similarity of sets, similarity of 

documents, Collaborative Filtering (CF) as a similar-set problem, and the distance 

measures for finding similarities. 

Finding Similar Items 

An analysis requires many times to find similar items. For example, finding similar 

excellent performance of students in Python programming, similar showrooms of a 

specific car model which show high sales per month, recommending books on similar 

topic such as in Internet of Things by Raj Kamal from McGraw-Hill Higher Education, 

etc. 

Application of Near Neighbour Search 

Similar items can be found using Nearest Neighbour Search (NNS). The search finds 

that a point in a given set is most similar (closest) to a given point. A dissimilarity 

function having larger value means less similar. The dissimilarity function is used to 

find similar items. 

NNS algorithm is as follows: Consider set S having points in a space M. Consider a 

queried point q EM, which means q is member of M. k-NNS algorithm finds the 

k-closet (1-NN) points to q in S. 

Do not consider the number of items in which two users' preferences overlap. (e.g., 2 

overlap items==> 1, more items may not be better.) 

If two users overlap on only one item, no correlation can be 

computed. The correlation is undefined if series of preference 

values are identical. 



 

 
 

Greater distance means greater dissimilarity. Dissimilarity coefficient relates to a 

distance metric in metrics space in v-dimensional space. An algorithm computes 

Euclidean, Manhattan and Minkowski distances using Equations. 

Distance metric is symmetric and follows triangular inequality. Meaning of triangular 

inequality can be understood by an example. Consider three vectors of lengths x, y, 

and z. 

Then, triangular inequality means 

z < x + y. It is similar to the theorem of inequality that the third side of a triangle is 

less than the sum of two other sides, and never equal. The theorem applies to v-

dimensional space also. Dissimilarity can be asymmetric, i.e., triangular inequality is not 

true (Bergman divergence). 

 

 
Jaccard Similarities set 

Let A and B be two sets. Jaccard similarity coefficient of two sets measures using 

notations in set theory as shown below: 

 

 

 

 
A n B means the number of elements or items that are same in sets A and B. A U B 

means the number of elements or items present in union of both the sets. Assume two 

set of students in two computer courses, Computer Applications CA, and Computer 

Science CS in a semester. Set CA 40 students opted for Java out of 

60 students. Set CS 30 students opted for Java out of 50 students. Jaccard similarity 

coefficient Jjava (CA, CS) = 30/(60 + 50) x 100% = 27%. Two sets are sharing 27% of 

the members for Java course. 

Similarity of Document. 



An application ofJaccard similarity coefficient is in Natural Language Processing 

(NLP) and text processing. It quantifies the similarity in documents. Computational steps 

are as follows: 

• Find Bag of Words (Section 9.2.1.4) and remove words such as is, are, 

does, at, in, .... 

• Assign weighting factor is the Term frequency and Inverse 

Document Frequency (TF-IDF). Consider the frequency of words in the 

document. 

 

 
 

• Find k-shingles. A shingle is a word of fixed length. The k-shingles are 

the number of times the similar shingles extracted from a document or 

text. Examples of a shingle are Java, GP, 8.0, Python, 80%, 

Programming. 

• Find n-grams. A gram is a contiguous sequence of fixed length item (word 

• or set of characters, letters, words in pairs, triplets, quadruplets, ...) in a 

document or text. The n-grams are the number of times the similar items 

(1- grams, 2-grams, ..) extracted from a document or text. The 3-gram 

examples are lava GP 8.0, Python Programming 7.8, Big Data Analytics, 

23A 240C 8LP, the numbers of which are extracted from the text. 

• Compute Jaccard similarity coefficient using Equation (6.22) between the 

documents. 

Collaborative Filtering as a Similar-Sets Finding Problem 

An analysis requires finding similar sets using collaborative filtering. Collaborative 

filtering refers to a filtering algorithm, which filters the items sets that have similarities 

with different items in a dataset. 

CF finds the sets with items having the same or close similarity coefficients. 

Following are some examples of applications of CF: 



Find those sets of students in computer application, and computer science who opt for 

the Java Programming subject in a semester. 

Find sets of students in Java Programming subjects to whom same teacher taught and 

they showed excellent performance. 

An algorithm finds the similarities between the sets for the CF. Applications of CF are 

in many ML methods, such as association rule mining, classifiers, and recommenders. 

Distance Measures for Finding Similar Items or Users 

Distance can be defined in a number of ways. Distance is the measure of length of a 

line between two values in a two-dimensional map or graph. Set of Equations (6.20) 

measures distances. 

For example, distance between (2014, 6%) and (2018, 8%) on a scatter plot when year 

is on the x axis and profit% on they axis is Distance = v [(2014 - 2018)2    + (6 - 8)2 ]    

=   v (16 + 4) = 4.47, using Equation (6.20b). Distance can also be 

 

 
 

similarly defined in v-dimensional space using Equation (6.20a). 

Distances between all members in a set of points can be computed in metrics space 

using a mathematical equation. Metrics space means measurable or quantifiable space. 

For example, profit and year on a scatter plot are in metric space of two dimensions. 

Probability distribution function values are in metric space. 

Consider student-performance measures 'very good' and 'excellent'. These parameters 

are in non-metric space. How are they made measurable? They become measurable 

when very good is specified as grade point average 8.5 which implies that a score 

between 8.0 to 9.0 is very good, and define 9.5 which implies that a score between 9.0 

to 10.0 is excellent on a 10-point 

 
 

Concept of Sparse and Dense Vectors Sparse vector uses a hash-map and consists of 

non- zero values. Hash-map is a collection, which stores data in (key• value) format 

(Section 3.3.1). Format is also called random access. Hashing means to convert a large 

value or string into shorter value or string so that indexing for searching is fast. 



For example, assume a vector, which consists of array elements, 

(subject, number of students opting, average GPA). 

• Dense vectors have elements (Hive, 40, 8.0), Oava, 30, 8.5), (FORTRAN, 

0, 0), (Pascal, 0, 0). Dense vector consists of all elements, whether the 

element value is 

 

 
 

O or not O. 

• Sparse vectors will be two only with elements (4, 40, 8.0) and (3, 30, 8.5). 

Random access Sparse vector means access to elements (key, value pairs) 

using key. Sparse vector consists of elements for which key is such that 

value is not O (Section 3.3.1). 

• Sparse vector has an associated hash-map in form of a hash-table. First 

row- Pascal, 1, second row- FORTRAN, 2, third row- Java, 3 and fourth 

row-Hive. 

• Hashing is a process of assigning a small number or small-sized string 

indexing, searching and memory saving purposes. Hash process uses a 

hash function, which results into not-colliding values. In case of two 

colliding numbers, the process assigns a new number. Sequential access 

sparse vectors mean two parallel accessing vectors, i.e., one to access keys 

and the other for values. 

 

 
Edit distance DEd is a distance measure for dissimilarity between two set of strings or 

words. DEd equals the minimum number of inserts and deletes of characters needed to 

transform one set into another. Applications of edit distances are in text analytics and 

natural language processing, similarities in DNA sequences etc. DNA sequences are 

strings of characters. 

 

 
Hamming Distance 



If both U and V are vectors, Hamming distance DHa is equal to the number of 

different elements between these two vectors. Recall Example 6.5 (iv) for Hamming 

distance between Jspi and Zspi. Hamming similarity-coefficient between car models 

Jaguar Land Rover and Zest is (1- 2/7) = 0.7. [70%] 

Otta between two strings of equal length is the number of positions at which the 

corresponding characters differ. Otta is also equal to the minimum number of 

substitutions required to transform one string into the other. Otta is also equal to the 

minimum number of errors that need correction using transformation or substitution. 

Hamming distance is therefore another distance measure for measuring the edit distance 

between two sets of strings, words or sequences. 

 

 
 

Frequent Item Set and Association rule 

Mining Frequent Item Set 

Frequent itemset refers to a set of items that frequently appear together, for example, 

Python and Big Data Analytics. Students of computer science frequently choose these 

subjects for in- depth studies. Frequent itemset refers to a frequent itemset, which is a 

subset of items that appears frequently in a dataset. 

Frequent Itemset Mining (FIM) refers to a data mining method which helps in 

discovering the itemsets that appear frequently in a dataset. For example, finding a set of 

students who frequently show poor performance in semester examinations. Frequent 

subsequence is a sequence of patterns that occurs frequently. For example, purchasing a 

football follows purchasing of sports kit. Frequent substructure refers to different 

structural forms, such as graphs, trees or lattices, which may be combined with itemsets 

or subsequences. 

Association Rule- Overview 

An important method of data mining is association rule mining or association analysis. 

The method has been widely used in many application areas for discovering interesting 

relationships which are present in large datasets. The objective is to find uncovered 



relationships using some strong rules. The rules are termed as association rules for 

frequent itemsets. Mahout includes a 'parallel frequent pattern growth' algorithm. The 

method analyzes the items in a group and then identifies which items typically appear 

together (association) 

Apriori Algorithm 

Apriori algorithm is used for frequent itemset mining and association rule mining. 

Apriori algorithm is considered as one of the most well-known association rule 

algorithms. The algorithm simply follows a basis that any subset of a large itemset must 

be a large itemset. This basis can be formally given as the Apriori principle. The Apriori 

principle can reduce the number of itemsets needed to be examined. Apriori principle 

suggests if an itemset is frequent, then all of its subsets must also be frequent. For 

example, if itemset {A, B, C} is a frequent itemset, then all of its subsets {A}, {B}, 

{C}, {A, B}, {B, C} and {A, C} must be frequent. 

On the contrary, if an itemset is not frequent, then none of its 

supersets can be frequent. This results into a smaller list of potential frequent itemsets as 

the mining progresses. 

 

 
 

Assume X and Y are two itemsets. Apriori principle holds due to the following property 

of support measure: 

 

 

 

 

Explanation: V means for all, and c means 'subset of' and can be 'equal to or included 

in'. Support of an itemset never exceeds the support of its subsets. This is known as the 

anti- monotone property of support. 

The algorithm uses k-itemsets (An itemset which contains k items is known as a k-

itemset) to explore (k+1)-itemsets in order to mine frequent itemsets from transactional 

database for the Boolean association rules (If Then rule is a Boolean association rule, as 

it checks if true or false). 



The frequent itemset algorithm uses candidate generation process. The groups of 

candidates are then tested against the dataset. Apriori uses breadth-first search method 

and a hash tree structure to count candidate itemsets. Also, it is assumed that items 

within an itemset are kept in lexicographic order. The algorithm identifies the frequent 

individual items in the database and extends them to larger and larger itemsets as long as 

those itemsets are found in the database. The frequent itemsets provide the general 

trends in the database as well. 

Evaluation of Candidate rules 

 
 
 

Increment the count of all candidates in Ck+1 that are contained int Fk+i = Candidates 

in Ck+i with minimum support 

} 

Steps of the algorithm can be stated in the following manner: 

Candidate itemsets are generated using only large itemsets of the previous iteration. The 

transactions in the database are not considered while generating candidate itemsets. 

The large itemset of the previous iteration is joined with itself to generate all itemsets 

having size higher by 1. 

Each generated itemset that does not have a large subset is discarded. The remaining 

itemsets 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure shows Apriori algorithm process for adopting the subset of frequent itemsets as a 

frequent itemset. 

It is observed in the Apriori example that every subset of a frequent itemset is also 

frequent. Thus, a candidate itemset in Ck+1 can be pruned even if one of its subsets is 

not contained in Fk. 

Applications of Association rule mining 

Market basket analysis is a tool for knowledge discovery about co-occurrence of 

items. A co-occurrence means two or more things occur together. It can also be defined 

as a data mining technique to derive the strength of association between pairs of 

product items. If 

 

 
 

people tend to buy two products (say A and B) together, then the buyer of product A is 

a potential customer for an advertisement of product B. 

The concept is similar to the real market basket where we select an item (product) and 

put it in a basket (itemset). The basket symbolizes the transactions. The number of 

baskets is very high as compared to the items in a basket. A set of items that is present 

in many baskets is termed as a frequent itemset. Frequency is the proportion of baskets 

that contain the items of interest. 

Market basket analysis can be applied to many areas. The following example explains 

the market basket model using application examples. 

Market basket analysis generates If-Then scenario rules. For example, if X occurs then 

Y is likely to occur too. If item A is purchased, then item B is likely to be purchased 

too. The rules are derived from the experience. This may be the result of frequencies of 

co-occurrence of items in past transactions. 

The rules can be used in several analytical strategies. The rules can be written in format 

If 



{A} Then {B}. The If part of the rule (A) is known as antecedent and the THEN part of 

the rule (B) is known as consequent. The condition is antecedent and the result is 

consequent. 

The applications of market basket analysis in various domains other than retail are: 

• Medical analytics: Market basket analysis can be used for conditions and symptom 

analysis. This helps in identifying a profile of illness in a better way. The analysis 

is also useful in genome analysis, molecular fragment mining, drug design  and 

studying the role of biomarkers in medicine. The analysis can also help to reveal 

biologically relevant associations betweendifferent genes. Further, it can also help 

to find the effect of environment on gene expressions. 

• Web usage analytics: FIM approaches can be used with viewing data on websites. 

The information contained in association rules can be exploited to learn about 

website browsing of visitor's behavior, developing website structure by making it 

more effective for visitors, or improving web marketing promotions. The results of 

this type of analysis can be used to inform website design (how items are grouped 

together) and to power recommendation engines (Section 6.8). Results are helpful 

in targeted marketing. For example, advertising content that people are probably 

interested in, based on past behavior of users. 

• Fraud detection  and  technical  dependence  analysis:  Extract  knowledge  so  that 

 
 
 

normal behavior patterns may be obtained in illegal transactions from a credit card 

database in order to detect and prevent fraud. Another example can be to find 

frequently occurring relationships or FIM rules 

between the various parties involved in the handling of the financial claim. Some 

examples are: 

• Financial institutions to analyze credit card purchases of customers to build 

profiles for fraud detection purposes and cross-selling opportunities. 



• Insurance institution builds the profiles to detect insurance claim fraud. The 

profiles of claims help to determine if more than one claim belongs to a 

particular victim within a specified period of time. 

• Click stream analysis or web link analysis: Click stream refers to a sequence of 

web pages viewed by a user. Analysis of clicks is the process of extracting 

knowledge from web logs. This helps to discover the unknown and potentially 

interesting patterns useful in the future. It facilitates an understanding of the 

behavior of website visitors. This knowledge can be used to enhance the way that 

web pages are interconnected or for increasing the sales of the commercial 

websites. 

• Telecommunication services analysis: Market basket analysis can be used to 

determine the type of services being utilized and the packages customers are 

purchasing. This knowledge can be used to plan marketing strategies for 

customers who are interested in similar services. For example, telecommunication 

companies can offer TV Internet, and web• services by creating combined offers. 

The analysis might also be useful to determine capacity requirements. 

• Plagiarism detection: It is the process of locating instances of similar content or 

idea within a work or a document. Plagiarism detection can findsimilarities among 

statements that may lead to similar paragraphs if all statements are similar and that 

possibly lead to similar documents. Formation of relevant word and sentence 

sequences for detection of plagiarism using association rule mining technique is 

also very popular technique. 

Finding Associations 

• Association rules intend to tell how items of a dataset are associated with each 

other. The concept of association rules was introduced in 1993 for discovering 

relations between 

 

 
 



items in sales data of a large retailing company. Association analysis is applicable 

to several domains. Some of them are marketing, bioinformatics, web mining, 

scientific data analysis, and intrusion detection systems. 

• The applications might be to find: products that are often purchased together, types 

of DNA sensitive to a new drug, the possibility of classifying web documents 

automatically, geophysical trends or patterns in seismicity to predict earthquakes 

and automate the malicious detecting characteristics. 

• In medical diagnosis, for example, considering the co-morbid (co-occur) 

conditions can help in treating the patient in better way. This helps in improving 

patient care and medicine prescription. 

Finding Similarity 
 

Let A and B be two itemsets. Jaccard similarity index of two itemsets is measured in 

terms of set theory using the following equation: 

 

 

 

 
Explanation: n means intersection, number of those elements or items which are the 

same in set A and B. U means union, number of elements or items present in union of A 

and B. 

How will you define a similarity in a purchase of car model 

Assume two sets of car customers, youth Y and family F. Assume in set Y, 40 out of 100 

youths and F 50 out of 200 families opted for the Tata Zest car model. Jaccard similarity 

index Jzest (Y, F) = 40/ (100 + 200).100% = 13%. Two sets are sharing 13% of the 

members who purchased a Zest. 

 

 

 

MODULE 5 



Chapter 1: Text 

Mining 
 

Text mining is the art and science of discovering knowledge, insights and patterns from 

an organized collection of textual databases. Textual mining can help with frequency 

analysis of important terms, and their semantic relationships. 

 
Text is an important part of the growing data in the world. Social media technologies 

have enabled users to become producers of text and images and other kinds of 

information. Text mining can be applied to large-scale social media data for gathering 

preferences, and measuring emotional sentiments. It can also be applied to societal, 

organizational and individual scales. 

 
• Text Mining Applications 
Text mining is a useful tool in the hands of chief knowledge officers to extract 

knowledge relevant to an organization. Text mining can be used across industry sectors 

and application areas, including decision support, sentiment analysis, fraud detection, 

survey analysis, and many more. 

• Marketing: The voice of the customer can be captured in its native and raw 

format and then analyzed for customer preferences and complaints. 

• Social personas are a clustering technique to develop customer segments of 

interest. Consumer input from social media sources, such as reviews, blogs, 

and tweets, contain numerous leading indicators that can be used towards 

anticipating and predicting consumer behavior. 

• A ‘listening platform’ is a text mining application, that in real time, gathers 

social media, blogs, and other textual feedback, and filters out the chatter to 

extract true consumer sentiment. The insights can lead to more effective 

product marketing and better customer service. 

 

• The customer call center conversations and records can be analyzed for patterns 

of customer complaints. Decision trees can organize this data to create decision 

choices that could help with product management activities and to become 

proactive in avoiding those complaints. 

 

• Business operations: Many aspects of business functioning can be accurately 

gauged from analyzing text./ 

• Social network analysis and text mining can be applied to emails, blogs, 

social media and other data to measure the emotional states and the mood 



of employee populations. Sentiment analysis can reveal early signs of 

employee dissatisfaction which can then can be proactively managed. 

 

 
 

• Studying people as emotional investors and using text analysis of the social 

Internet to measure mass psychology can help in obtaining superior 

investment returns. 

 

• Legal: In legal applications, lawyers and paralegals can more easily search case 

histories and laws for relevant documents in a particular case to improve their 

chances of winning. 

• Text mining is also embedded in e-discovery platforms that help in 

minimizing risk in the process of sharing legally mandated documents. 

• Case histories, testimonies, and client meeting notes can reveal additional 

information, such as morbidities in a healthcare situation that can help 

better predict high-cost injuries and preventcosts. 

 

• Governance and Politics: Governments can be overturned based on a tweet 

originating from a self-immolating fruit-vendor in Tunisia. 

• Social network analysis and text mining of large-scale social media data 

can be used for measuring the emotional states and the mood of constituent 

populations. Micro-targeting constituents with specific messages gleaned 

from social media analysis can be a more efficient use of resources when 

fighting democratic elections. 

• In geopolitical security, internet chatter can be processed for real- time 

information and to connect the dots on any emerging threats. 

• In academic, research streams could be meta-analyzed for underlying 

research trends. 

• Text Mining Process 
Text Mining is a rapidly evolving area of research. As the amount of social media and 

other text data grows, there is need for efficient abstraction and categorization of 

meaningful information from the text. 



 

The five phases for processing text are as follows: 

Phase 1: Text pre-processing enables Syntactic/Semantic text-analysis and does the 

followings: 

 
 
 

• Text cleanup is a process of removing unnecessary or unwanted information. 

Text cleanup converts the raw data by filling up the missing values, identifies 

and removes outliers, and resolves the inconsistencies. For example, 

removing comments, removing or escaping "%20" from URL for the web 

pages or cleanup the typing error, such as teh (the), do n't (do not) [%20 

specifies space in a URL]. 

• Tokenization is a process of splitting the cleanup text into tokens (words) 

using white spaces and punctuation marks as delimiters. 

• Part of Speech (POS) tagging is a method that attempts labeling of each token 

(word) with an appropriate POS. Tagging helps in recognizing names of 

people, places, organizations and titles. English language set includes the 

noun, verb, adverb, adjective, 

prepositions and conjunctions. Part of Speech encoded in the annotation system of the 

Penn Treebank Project has 36 POS tags.4 

• Word sense disambiguation is a method, which identifies the sense of a word 

used in a sentence; that gives meaning in case the word has multiple meanings. 

The methods, which resolve the ambiguity of words can be context or 

proximity based. Some examples of such words are bear, bank, cell and bass. 

• Parsing is a method, which generates a parse-tree for each sentence. Parsing 

attempts and infers the precise grammatical relationships between different 

words in a given sentence. 

Phase 2: Features Generation is a process which first defines features (variables, 

predictors). Some of the ways of feature generations are: 

• Bag of words-Order of words is not that important for certain applications. 



Text document is represented by the words it contains (and their occurrences). 

Document classification methods commonly use the bag-of-words model. The 

pre- processing of a document first provides a document with a bag of words. 

Document classification methods then use the occurrence (frequency) of each 

word as a feature for training a classifier. Algorithms do not directly apply on 

the bag of words, but use the frequencies. 

• Stemming-identifies a word by its root. 

• Normalizes or unifies variations of the same concept, such as speak 

for three variations, i.e., speaking, speaks, speakers denoted by [speaking, 

speaks, speaker- 

+ speak] 

• Removes plurals, normalizes verb tenses and remove affixes. 

Stemming reduces the word to its most basic element. For example, impurification -+ pure. 

• Removing stop words from the feature space-they are the common words, 

unlikely to help text mining. The search program tries to ignore stop words. 

For example, ignores a, at, for, it, in 

and are. 

• Vector Space Model (VSM)-is an algebraic model for representing text documents as 

vector of identifiers, word frequencies or terms in the document index. VSM uses the 

method of term frequency-inverse document frequency (TF-IDF) and evaluates 

how important is a 

 

 
 

word in a document. 

When used in document classification, VSM also refers to the bag-of-words model. 

This bag of words is required to be converted into a term-vector in VSM. The term 

vector provides the numeric values corresponding to each term appearing in a 

document. The term vector is very helpful in feature generation and selection. 

Term frequency and inverse document frequency (IDF) are important metrics in text 

analysis. TF-IDF weighting is most common• Instead of the simple TF, IDF is used to 

weight the importance of word in the document. 

Phase 3: Features Selection is the process that selects a subset of features by rejecting 

irrelevant and/or redundant features (variables, predictors or dimension) according to 

defined criteria. Feature selection process does the following: 

• Dimensionality reduction-Feature selection is one of the methods of division and 

therefore, dimension reduction. The basic objective is to eliminate irrelevant and 

redundant data. Redundant features are those, which provide no extra information. 

Irrelevant features provide no useful or relevant information in any context. 



Principal Component Analysis (PCA) and Linear Discriminate Analysis (LDA) are 

dimension reduction methods. Discrimination ability of a feature measures relevancy 

of features. Correlation helps in finding the redundancy of the feature. Two features 

are redundant to each other if their values correlate with each other. 

• N-gram evaluation-finding the number of consecutive words of interest and extract 

them. For example, 2-gram is a two words sequence, ["tasty food", "Good one"]. 3-

gram is a three words sequence, ["Crime Investigation Department"]. 

• Noise detection and evaluation of outliers methods do the identification of unusual or 

suspicious items, events or observations from the data set. This step helps in cleaning 

the data. 

The feature selection algorithm reduces dimensionality that not only improves the 

performance of learning algorithm but also reduces the storage requirement for a dataset. 

The process enhances data understanding and its visualization. 

Phase 4: Data mining techniques enable insights about the structured database that 

resulted from the previous phases. Examples of techniques are: 

• Unsupervised learning (for example, clustering) 

• The class labels (categories) of training data are unknown 

• Establish the existence of groups or clusters in the data 

Good clustering methods use high intra-cluster similarity and low inter-cluster 

similarity. 

Examples of uses - biogs, 

pattern and trends. 

• Supervised learning (for example, classification) 

• The training data is labeled indicating the class 

• New data is classified based on the training set 

Classification is correct when the known label of test sample is identical with the 

resulting class computed from the classification model. 

 

 
 

Examples of uses are news filtering application, where it is required to automatically 

assign incoming documents to pre-defined categories; email spam filtering, where it is 

identified whether incoming email messages are spam or not. 

Example of text classification methods are Naive Bayes Classifier and SVMs. 

• Identifying evolutionary patterns in temporal text streams-the method is useful in a 

wide range of applications, such as summarizing of events in news articles and 

extracting the research trends in the scientific literature. 

Phase 5: Analysing results 

 



• Evaluate the outcome of the complete process. 

• Interpretation of Result- If acceptable then results obtained can be used as an input for 

next set of sequences. Else, the result can be discarded, and try to understand what and 

why the process failed. 

• Visualization - Prepare visuals from data, and build a prototype. 

• Use the results for further improvement in activities at the enterprise, industry or 

institution. 

 

Text Mining Challenges 

The challenges in the area of text mining can be classified on the basis of documents 

area- characteristics. Some of the classifications are as follows: 

• NLP issues: 

• POS Tagging 
 

• Ambiguity 

• Tokenization 

• Parsing 

• Stemming 

• Synonymy and polysemy 

• Mining techniques: 

• Identification of the suitable algorithm(s) 

• Massive amount of data and annotated corpora 

• Concepts and semantic relations extraction 

• When no training data is available 

• Variety of data: 

• Different data sources require different approaches and different areas of expertise 

 
 
 

• Unstructured and language independency 

• Information visualization 

• Efficiency when processing real-time text stream 



• Scalability 
 

• Term Document Matrix 
This is the heart of the structuring process. Free flowing text can be transformed into 

numeric data in a TDM, which can then be mined using regular data mining techniques. 

• There are several efficient techniques for identifying key terms from a text. There 

are less efficient techniques available for creating topics out of them. For the 

purpose of this discussion, one could call key words, phrases or topics as a term 

of interest. This approach measures the frequencies of select important terms 

occurring in each document. This creates a t x d Term–by–Document Matrix 

(TDM) where t is the number of terms and d is the number of documents (Table 

11.1). 

• Creating a TDM requires making choices of which terms to include. The terms 

chosen should reflect the stated purpose of the text mining exercise. The list of 

terms should be as extensive as needed, but should not include unnecessary stuff 

that will serve to confuse the analysis, or slow the computation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1: Term-Document Matrix 

 
 
 



Here are some considerations in creating a TDM. 
 

• A large collection of documents mapped to a large bag of words will likely lead 

to a very sparse matrix if they have few common words. Reducing 

dimensionality of data will help improve the speed of analysis and 

meaningfulness of the results. Synonyms, or terms will similar meaning, should 

be combined and should be counted together, as a common term. This would help 

reduce the number of distinct terms of words or ‘tokens’. 

• Data should be cleaned for spelling errors. Common spelling errors should be 

ignored and the terms should be combined. Uppercase- lowercase terms should 

also be combined. 

• When many variants of the same term are used, just the stem of theword would 

be used to reduce the number of terms. For instance, terms like customer order, 

ordering, order data, should be combined into a single token word, called 

‘Order’. 

• On the other side, homonyms (terms with the same spelling but different 

meanings) should be counted separately. This would enhance the quality of 

analysis. For example, the term order can mean a customer order, or the ranking 

of certain choices. These two should be treated separately. “The boss ordered 

that the customer orders data analysis be presented in chronological order’. This 

statement shows three different meanings for the word ‘order’. Thus, there will be 

a need for a manual review of the TD matrix. 

• Terms with very few occurrences in very few documents should be eliminated 

from the matrix. This would help increase the density of the matrix and the 

quality of analysis. 

• The measures in each cell of the matrix could be one of several possibilities. It 

could be a simple count of the number of occurrences of each term in a document. 

It could also be the log of that number. It could be the fraction number computed 

by dividing the frequency count by the total number of words in the document. 

Or there may be binary valuesin the matrix to represent whether a term is 

mentioned or not. The choice of value in the cells will depend upon the purpose 

of the textanalysis. 

 
At the end of this analysis and cleansing, a well-formed, densely populated, 

rectangular, TDM will be ready for analysis. The TDM could be mined using all the 

available data mining techniques. 

 

• Mining the TDM 
The TDM can be mined to extract patterns/knowledge. A variety of techniques could 

be applied to the TDM to extract new knowledge. 



 
Predictors of desirable terms could be discovered through predictive techniques, such 

as regression analysis. Suppose the word profit is a desirable word in a document. 

The number of occurrences of the word profit in a document could be regressed against 

many other terms in the TDM. The relative strengths of the coefficients of various 

predictor variables would 

 

 
 

show the relative impact of those terms on creating a profitdiscussion. 

 
 

Predicting the chances of a document being liked is another form of analysis. For 

example, important speeches made by the CEO or the CFO to investors could be 

evaluated for quality. If the classification of those documents (such as good or poor 

speeches) was available, then the terms of TDM could be used to predict the speech 

class. A decision tree could be constructed that makes a simple tree with a few decision 

points that predicts the success of a speech 80 percent of the time. This tree could be 

trained with more data to become better over time. 

 
Clustering techniques can help categorize documents by common profile. For example, 

documents containing the words investment and profit more often could be bundled 

together. Similarly, documents containing the words, customer orders and marketing, 

more often could be bundled together. Thus, a few strongly demarcated bundles could 

capture the essence of the entire TDM. These bundles could thus help with further 

processing, such as handing over select documents to others for legal discovery. 

 
Association rule analysis could show relationships of coexistence. Thus, one could say 

that the words, tasty and sweet, occur together often (say 5 percent of the time); and 

further, when these two words are present, 70 percent of the time, the word happy, is 

also present in the document. 

 
• Comparing Text Mining and Data Mining 



Text Mining is a form of data mining. There are many common elements between Text 

and Data Mining. However, there are some key differences (Table 1.2). The key 

difference is that text mining requires conversion of text data into frequency data, 

before data mining techniques can beapplied. 

 

 

 

 
Dimension 

 
Text Mining 

 
Data Mining 

 
Nature of data 

 
Unstructured data: Words, 

phrases, sentences 

 
Numbers; alphabetical and 

logical values 

 

 
Language used 

 
Many languages and dialects used in the 

world; 

many languages are extinct, new 

documents are discovered 

 

 
Similar numerical systems 

across the world 

 
Clarity and 

precision 

 
Sentences can be ambiguous; sentiment 

may contradict the words 

 

 
Numbers are precise. 

 

 
Consistency 

 

 
Different parts of the text can contradict 

each other 

 
Different parts of data can be 

inconsistent, thus, requiring 

statistical significance analysis 

 

 
Sentiment 

 
Text may present a clear and consistent 

or mixed sentiment, across a continuum. 

Spokenwords adds further sentiment 

 

 
Not applicable 

 

 
Quality 

 
Spelling errors. Differing values of 

proper nouns such as names. Varying 

quality of language translation 

 

 
Issues with missing values, 

outliers, etc 

 

 
Nature of 

Analysis 

 

 
Keyword based search; co- existence of 

themes; Sentiment Mining 

 
A full wide range of statistical 

and machine learning analysis for 

relationship and differences 

 

 

Table 1.2: Comparing Text Mining and Data Mining 

 
 



 

 

• Text Mining Best Practices 
Many of the best practices that apply to the use of data mining techniques will also apply to 

text mining. 

 

• The first and most important practice is to ask the right question. A good 

question is one which gives an answer and would lead to large payoffs for the 

organization. The purpose and the key question will define how and at what 

levels of granularity the TDM would be made. For example, TDM defined for 

simpler searches would be different from those used for complex semantic 

analysis or network analysis. 

• A second important practice is to be creative and open in proposing imaginative 

hypotheses for the solution. Thinking outside the box is important, both in the 

quality of the proposed solution as well as in finding the high quality data sets 

required to test the hypothesized solution. For example, a TDM of consumer 

sentiment data should be combined with customer order data in order to develop 

a comprehensive view of customer behavior. It’s important to assemble a team 

that has a healthy mix of technical and business skills. 

• Another important element is to pursue the problem iteratively. Too much data 

can overwhelm the infrastructure and also befuddle the mind. It is better to divide 

and conquer the problem with a simpler TDM, with fewer terms and fewer 

documents and data sources. Expand as needed, in an iterative sequence of steps. 

In the future, add new terms to help improve predictive accuracy. 

• A variety of data mining tools should be used to test the relationships in the 

TDM. Different decision tree algorithms could be run alongside cluster analysis 

and other techniques. Triangulating the findings with multiple techniques, and 

many what-if scenarios, helps build confidence in the solution. Test the solution 

in many ways before committing to deploy it. 

 

 

 

Chapter 2: Web 

Mining 

 
Web mining is the art and science of discovering patterns and insights from the World-

wide web HYPERLINK "http://en.wikipedia.org/wiki/World_Wide_Web" so as to 

improve it. The world-wide web is at the heart of the digital revolution. More data is 

posted on the web every day than was there on the whole web just 20 years ago. 

http://en.wikipedia.org/wiki/World_Wide_Web


Billions of users are using it every day for a variety of purposes. The web is used for 

electronic commerce, business communication, and many other applications. Web 

mining analyzes data from the web and helps find insights that could optimize the web 

content and improve the user experience. Data for web mining is collected via Web 

crawlers, web logs, and other means. 

 
Here are some characteristics of optimized websites: 

 

• Appearance: Aesthetic design. Well-formatted content, easy to scan and 

navigate. Good color contrasts. 

• Content: Well planned information architecture with useful content. Fresh 

content. Search-engine optimized. Links to other goodsites. 

• Functionality: Accessible to all authorized users. Fast loading times. Usable forms. Mobile enabled. 

 
This type of content and its structure is of interest to ensure the web is easy to use. The 

analysis of web usage provides feedback on the web content, and also the consumer’s 

browsing habits. This data can be of immense use for commercial advertising, and even 

for social engineering. 

 
The web could be analyzed for its structure as well as content. The usage pattern of 

web pages could also be analyzed. Depending upon objectives, web mining can be 

divided into three different types: Web usage mining, Web content mining and Web 

structure mining (Figure 2.1). 

 

 
Figure: 2.1 Web Mining structure 

 
 
 

• Web content mining 
A website is designed in the form of pages with a distinct URL (universal resource 

locator). A large website may contain thousands of pages. These pages and their 

content is managed using specialized software systems called Content Management 



Systems. Every page can have text, graphics, audio, video, forms, applications, and 

more kinds of content including user generated content. 

 
The websites keep a record of all requests received for its page/URLs, including the 

requester information using ‘cookies’. The log of these requests could be analyzed to 

gauge the popularity of those pages among different segments of the population. The 

text and application content on the pages could be analyzed for its usage by visit 

counts. The pages on a website themselves could be analyzed for quality of content that 

attracts most users. Thus the unwanted or unpopular pages could be weeded out, or 

they can be transformed with different content and style. Similarly, more resources 

could be assigned to keep the more popular pages more fresh and inviting. 

 
• Web structure mining 
The Web works through a system of hyperlinks using the hypertext protocol (http). 

Any page can create a hyperlink to any other page, it can be linked to by another page. 

The intertwined or self-referral nature of web lends itself to some unique network 

analytical algorithms. The structure of Web pages could also be analyzed to examine 

the pattern of hyperlinks among pages. There are two basic strategic models for 

successful websites: Hubs and Authorities. 

• Hubs: These are pages with a large number of interesting links. They serve as a 

hub, or a gathering point, where people visit to access a variety of information. 

Media sites like Yahoo.com, or government sites would serve that purpose. More 

focused sites like Traveladvisor.com and yelp.com could aspire to becoming hubs 

for new emergingareas. 

• Authorities: Ultimately, people would gravitate towards pages that provide the 

most complete and authoritative information on a particular subject. This could 

be factual information, news, advice, user reviews etc. These websites would 

have the most number of inbound links from other websites. Thus 

Mayoclinic.com would serve as an authoritative page for expert medical opinion. 

NYtimes.com would serve as an authoritative page for daily news. 

• Web usage mining 
As a user clicks anywhere on a webpage or application, the action is recorded by 

many entities in many locations. The browser at the client machine will record the click, 

and the web server providing the content would also make a record of the pages served 

and the user activity on those pages. The entities between the client and the server, 

such as the  HYPERLINK "http://en.wikipedia.org/wiki/Ad_server"router 

HYPERLINK "http://en.wikipedia.org/wiki/Ad_server", proxy HYPERLINK 

"http://en.wikipedia.org/wiki/Ad_server"  HYPERLINK 

"http://en.wikipedia.org/wiki/Ad_server"server HYPERLINK 

http://en.wikipedia.org/wiki/Ad_server
http://en.wikipedia.org/wiki/Ad_server
http://en.wikipedia.org/wiki/Ad_server
http://en.wikipedia.org/wiki/Ad_server
http://en.wikipedia.org/wiki/Ad_server
http://en.wikipedia.org/wiki/Ad_server


"http://en.wikipedia.org/wiki/Ad_server", or HYPERLINK 

"http://en.wikipedia.org/wiki/Ad_server"  HYPERLINK 

"http://en.wikipedia.org/wiki/Ad_server"ad HYPERLINK 

"http://en.wikipedia.org/wiki/Ad_server"  HYPERLINK 

"http://en.wikipedia.org/wiki/Ad_server"server HYPERLINK 

"http://en.wikipedia.org/wiki/Ad_server", too would record that HYPERLINK 

"http://en.wikipedia.org/wiki/Ad_server"  HYPERLINK 

"http://en.wikipedia.org/wiki/Ad_server"click. 

 

The goal of web usage mining is to extract useful information and patterns from data 

generated through Web page visits and transactions. The activity data comes from data 

stored 

 

 
 

in server access logs, referrer logs, agent logs, and client-side cookies. The user 

characteristics and usage profiles are also gathered directly, or indirectly, through 

syndicated data. Further, metadata, such as page attributes, content attributes, and 

usage data are also gathered. 

 
The web content could be analyzed at multiple levels (Figure 2.2). 

 

• The server side analysis would show the relative popularity of the web pages 

accessed. Those websites could be hubs andauthorities. 

• The client side analysis could focus on the usage pattern or the actual content 

consumed and created by users. 

• Usage pattern could be analyzed using ‘clickstream’ analysis, i.e. analyzing 

web activity for patterns of sequence of clicks, and the location and 

duration of visits on websites. Clickstream analysis can be useful for web 

activity analysis, software testing, market research, and analyzing 

employee productivity. 

• Textual information accessed on the pages retrieved by users could be 

analyzed using text mining techniques. The text would be gathered and 

structured using the bag-of-words technique to build a Term-document 

matrix. This matrix could then be mined using cluster analysis and 

association rules for patterns such as popular topics, user segmentation, and 

sentiment analysis. 
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Figure: 2.2 Web Usage Mining architecture 

 
Web usage mining has many business applications. It can help predict user behavior 

based on previously learned rules and users' profiles, and can help determine lifetime 

value of clients. It can also help design cross-marketing strategies across products, by 

observing association rules among the pages on the website. Web usage can help 

evaluate promotional campaigns and see if the users were attracted to the website and 

used the pages relevant to the campaign. Web usage mining could be used to present 

dynamic information to users based on their interests and profiles. This includes 

targeted online ads and coupons at user groups based on user access patterns. 

• Web Mining Algorithms 
Hyperlink-Induced Topic Search (HITS) is a link analysis algorithm that rates web 

pages as being hubs or authorities. Many other HITS-based algorithms have also been 

published. The most famous and powerful of these algorithms is the PageRank 

algorithm. Invented by 

 

 
 

Google co-founder Larry Page, this algorithm is used by Google to organize the results 

of its search function. This algorithm helps determine the relative importance of any 

particular web page by counting the number and quality of links to a page. The 

websites with more number of links, and/or more links from higher-quality websites, 

will be ranked higher. It works in a similar way as determining the status of a person in 

a society of people. Those with relations to more people and/or relations to people of 

higher status will be accorded a higher status. 

 
PageRank is the algorithm that helps determine the order of pages listed upon a 

Google Search query. The original PageRank algorithm formuation has been updated in 

many ways and the latest algorithm is kept a secret so other websites cannot take 

advantage of the algorithm and manipulate their website according to it. However, 

there are many standard elements that remain unchanged. These elements lead to the 

principles for a good website. This process is also called Search Engine Optimization 

(SEO). 

 

 

 

 



 

 

Chapter 3 

Naïve Bayes 

Analysis 

 
Naïve Bayes technique is a is supervised machine learning technique that that uses 

probability theory based analysis. 

It is machine learning technique that computes the probabilities of an instance of 

belonging to each of many target classes, given the prior probabilities of classification 

using individual factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P(c|x) is the posterior probability of class (c, 

target) given predictor (x, attributes). 

• P(c) is the prior probability of class. 

• P(x|c) is the likelihood which is the probability of predictor given class. 

• P(x) is the prior probability of predictor. 

• Probability 

• The Bayes Rule provides the formula for the probability of Y given X. But, 

in real- world problems, you typically have multiple X variables. 

• When the features are independent, we can extend the Bayes Rule to what is 

called Naive Bayes. 

• It is called ‘Naive’ because of the naive assumption that the X’s are 

independent of each other. Regardless of its name, it’s a powerful formula. 

 



 

 

 
 
 

• In technical jargon, the left-hand-side (LHS) of the equation is understood as 

the posterior probability or simply the posterior. 

• The RHS has 2 terms in the numerator. 

• The first term is called the ‘Likelihood of Evidence’. It is nothing but the 

conditional probability of each X’s given Y is of particular class ‘c’. 

• Since all the X’s are assumed to be independent of each other, you can just 

multiply the ‘likelihoods’ of all the X’s and called it the ‘Probability of 

likelihood of evidence’. This is known from the training dataset by filtering 

records where Y=c. 

• The second term is called the prior which is the overall probability of Y=c, 

where c is a class of Y. In simpler terms, Prior = count(Y=c) / n_Records. 

 

 

 

• An example is better than an hour of theory. So let’s see one 

Naive Bayes Example 
• Say you have 1000 fruits which could be either ‘banana’, ‘orange’ or ‘other’. 

• These are the 3 possible classes of the Y variable. 

• We have data for the following X variables, all of which are binary (1 or 0). 

• Long 

• Sweet 

• Yellow 



• The first few rows of the training dataset look like this: 

 
• For the sake of computing the probabilities, let’s aggregate the training data to 

form a counts table like this. 

 

 

 

 
 

• So the objective of the classifier is to predict if a given fruit is a ‘Banana’ or 

‘Orange’ or ‘Other’ when only the 3 features (long, sweet and yellow) are 

known. 

• Let’s say you are given a fruit that is: Long, Sweet and Yellow, can you 

predict what fruit it is? 

• This is the same of predicting the Y when only the X variables in testing 

data are known. Let’s solve it by hand using Naive Bayes. 

• The idea is to compute the 3 probabilities, that is the probability of the fruit 

being a banana, orange or other. Whichever fruit type gets the highest 

probability wins. 

• All the information to calculate these probabilities is present in the above tabulation. 

• Step 1: Compute the ‘Prior’ probabilities for each of the class of fruits. 

o P(Y=Banana) = 500 / 1000 = 0.50 

o P(Y=Orange) = 300 / 1000 = 0.30 

o P(Y=Other) = 200 / 1000 = 0.20 

• Step 2: Compute the probability of evidence that goes in the denominator. 

o P(x1=Long) = 500 / 1000 = 0.50 



o P(x2=Sweet) = 650 / 1000 = 0.65 

o P(x3=Yellow) = 800 / 1000 = 0.80 

• Step 3: Compute the probability of likelihood of evidences that goes in the numerator. 

• Here, I have done it for Banana alone. 

• Probability of Likelihood for Banana 

o P(x1=Long | Y=Banana) = 400 / 500 = 0.80 

o P(x2=Sweet | Y=Banana) = 350 / 500 = 0.70 

 
 
 

o P(x3=Yellow | Y=Banana) = 450 / 500 = 0.90 

• Step 4: Substitute all the 3 equations into the Naive Bayes formula, to get the 

probability that it is a banana. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advantages 

• When assumption of independent predictors holds true, a Naive Bayes 

classifier performs better as compared to other models 

• Naive Bayes requires a small amount of training data to estimate the test 

data. So, the training period is less. 

• Naive Bayes is also easy to implement. 

Disadvantages 
 

• Main imitation of Naive Bayes is the assumption of independent predictors. 

Naive Bayes implicitly assumes that all the attributes are mutually 



independent. In real life, it is almost impossible that we get a set of predictors

which are completely 

independent. 

• If categorical variable has a category in test data set, which was not observed in 

training data set, then model will assign a 0 (zero) probability and will be 

unable to make a prediction. This is often known as Zero Frequency. To solve 

this, we can use the smoothing technique. One of the simplest smoothing 

techniques is called Laplace estimation. 

 

 
 

Chapter 5 

Support Vector 

Machine 

• “Support Vector Machine” (SVM) is a supervised machine learning algorithm 

which can be used for both classification or regression challenges. 

• However, it is mostly used in classification problems. 

• In this algorithm, we plot each data item as a point in n-dimensional space 

(where n is number of features you have) with the value of each feature being 

the value of a particular coordinate. 

• Then, we perform classification by finding the hyper-plane that differentiate the two 

 
 

 

 

 

How does it work? 

• Thumb rule to identify the right hyper-plane 

• • Select the hyper-plane which segregates the two classes better 



• • Maximizing the distances between nearest 

data point (either class) and hyper-plane. This distance is called as Margin. 

 

 

 

 

 

 

SVM Model 
 

 

Advantages of SVM 
• The main strength of SVM is that they work well even when the number of 

SVM features is much larger than the number of instances. 

•  It can work on datasets with huge feature space, such is the case in spam 

filtering, where a large number of words are the potential signifiers of a message 

being spam. 

 

 

 

•  Even when the optimal decision boundary is a nonlinear curve, the SVM 

transforms the variables to create new dimensions such that the representation 

of the classifier is a linear function of those transformed dimensions of the data. 

•  SVMs are conceptually easy to understand. They create an easy-to- understand 

linear classifier. By working on only a subset of relevant data,. they are 

computationally efficient. SVMs are now available with almost all data 

analytics toolsets. 

Disadvantages of SVM 
The SVM technique has two major constraints 



•  It works well only with real numbers, i.e., all the data points in all the 

dimensions must be defined by numeric values only, 

•  It works only with binary classification problems. One can make a series of 

cascaded SVMs to get around this constraint. 

• Training the SVMs is an inefficient and time consuming process, when the 

data is large. 

• It does not work well when there is much noise in the data, and thus has to 

compute soft margins. 

• The SVMs will also not provide a probability estimate of classification, 

i.e., the confidence level for classifying an instance. 


